[1]
M. Zhang, J.H. Tay, Y. Qian and X.S. Gu, Comparison between anaerobic-anoxic-oxic and anoxic-oxic for coke plant wastewater treatment, J Environ Eng, vol. 123, 1997, pp.876-883.
DOI: 10.1061/(asce)0733-9372(1997)123:9(876)
Google Scholar
[2]
P. Lai, H. -Z. Zhao, C. Wang, et al, Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, Journal of Hazardous Materials, vol. 147, 2007, pp.232-239.
DOI: 10.1016/j.jhazmat.2006.12.075
Google Scholar
[3]
F. Z. Zhang, Y. Gong, Y. L. Wu, Ozone-hydrogen peroxide treatment of residual organic compounds in coking wastewater, Chemical Industry and Engineering Progress, vol. 28, 2009, pp.1266-1270.
Google Scholar
[4]
T. Y. Chen, C. M. Kao, T. Y. Yeh, et al, Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study, Chemosphere, vol. 64, 2006, pp.497-502.
DOI: 10.1016/j.chemosphere.2005.11.069
Google Scholar
[5]
M. M. Aslam, M. Malik. Treatment performances of compost-based and gravel-based vertical flow wetlands operated identically for refinery wastewater treatment in Pakistan, Ecological Engineering, vol. 30, 2007 , pp.34-42.
DOI: 10.1016/j.ecoleng.2007.01.002
Google Scholar
[6]
T. G. Bulc, A. Ojstrsek, The use of constructed wetland for dye-rich textile wastewater treatment, Journal of Hazardous Materials, vol. 155, 2008, pp.76-82.
DOI: 10.1016/j.jhazmat.2007.11.068
Google Scholar
[7]
A. V. Dordio, C. Duarte, M. Barreiros, et al, Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp. - Potential use for phytoremediation?, Bioresource Technology, vol. 100, 2008, pp.1156-1161.
DOI: 10.1016/j.biortech.2008.08.034
Google Scholar
[8]
G D. Ji, T. H. Sun, Q.X. Zhou, et al, Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China, Ecological Engineering, vol. 18, 2002, pp.459-465.
DOI: 10.1016/s0925-8574(01)00106-9
Google Scholar
[9]
T. Kosjek, E. Heath, B. Kompare, Removal of pharmaceutical residues in a pilot wastewater treatment plant, Analytical and Bioanalytical Chemistry, vol. 387, 2007, pp.1379-1387.
DOI: 10.1007/s00216-006-0969-1
Google Scholar
[10]
A. T. Stone, J. J. Morgan, Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics, Environmental Science & Technology, vol. 18, 1984, pp.617-624.
DOI: 10.1021/es00126a010
Google Scholar
[11]
A. T. Stone, Reductive Dissolution of Manganese(III/Iv) Oxides by Substituted Phenols, Environmental Science & Technology, vol. 21, 1987, pp.979-988.
DOI: 10.1021/es50001a011
Google Scholar
[12]
D. S. Baldwin, J. K. Beattie, L. M. Coleman, et al, Hydrolysis of an organophosphate ester by manganese dioxide, Environmental Science & Technology, vol. 35, 2001, pp.713-716.
DOI: 10.1021/es001309l
Google Scholar
[13]
S. S. Jin, L. M. Zhang, J. Z. He, Review of reactions of manganese oxides with organic compounds and applications of MnOx in environmental remediation, Acta Scientiae Circumstantiae, vol. 28, 2008, pp.2394-2403.
Google Scholar
[14]
H. Zhang, Oxidative transformation of triclosan and chlorophene by manganese oxides, Environmental Science & Technology, vol. 37, 2003, pp.2421-2430.
DOI: 10.1021/es026190q
Google Scholar
[15]
J. J. Hu, J. X. Xiao, Y. Ren, Adsorption Process of Organic Contaminant in Untreated Coking Wastewater by Powdered Activated Carbon, Environmental Science, vol. 29, 2008, pp.1567-1571.
Google Scholar