[1]
R.R. Mohler, Nonliner systems: Vol. 2 Application to Bilinear Control. Englewood Cliffs, NJ: Prentice-Hall, (1991).
Google Scholar
[2]
R.R. Mohler, Bilinear Control Processes. New York: Academic, (1973).
Google Scholar
[3]
E.P. Ryan and N.J. Buckingham, On asymtotically stabilizing feedback control of bilinear systems, IEEE Trans. Autom. Control, vol. AC-28, no. 8, pp.863-864, Aug. (1983).
DOI: 10.1109/tac.1983.1103323
Google Scholar
[4]
Y. Cheng, Controllability of switched bilinear system, IEEE Trans. Autom. Control, vol. 50, no. 4, pp.511-515, Apr. (2005).
Google Scholar
[5]
H. J. Marquez, Nonlinear control systems Analysis and Design. Hoboken, NJ: Willey, (2003).
Google Scholar
[6]
T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans . Syst., Man, Cybern., vol. SMC-15, no. 1, pp.116-132, Jan. (1985).
DOI: 10.1109/tsmc.1985.6313399
Google Scholar
[7]
K. Kiriakidis, A. Grivas, and A. Tzes, A sufficient criterion for stability of Takagi-Sugeno fuzzy model, IEEE Trans. Fuzzy Syst., New Orleans, LA, Sep. 1996, pp.265-271.
DOI: 10.1109/fuzzy.1996.551754
Google Scholar
[8]
K. Kiriakidis, Fuzzy model-based control of complex plants, IEEE Trans. Fuzzy syst., vol. 6, no. 4, pp.517-529, Nov. (1998).
DOI: 10.1109/91.728444
Google Scholar
[9]
T.H.S. Li and S.H. Tsai, T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems, IEEE Trans. Fuzzy Syst., vol. 15, no. 3, pp.494-506, Jun. (2007).
DOI: 10.1109/tfuzz.2006.889964
Google Scholar
[10]
S.H. Tsai and T.H. SLi, Robust fuzzy control of a class of fuzzy bilinear systems with time-delay, Chaos, Solution & Fractals, Inpress Online. Available: DOI: 10. 1016/j. chaos. 2007. 06. 057.
DOI: 10.1016/j.chaos.2007.06.057
Google Scholar
[11]
S.S.L. Chang and T.K.C. Feng, Adaptive guaranteed cost control of systems with uncertain parameters, IEEE Trans. Autom. Control, vol. 17, no. 4, pp.474-483, (1972).
DOI: 10.1109/tac.1972.1100037
Google Scholar
[12]
J.M. Zhang, H.R. Li and A.P. Zhang. Stability analysis and systematic design of fuzzy control systems, J. Fuzzy Sets and Systems, vol. 120, no. 1, pp.65-72. May. (2001).
DOI: 10.1016/s0165-0114(99)00056-1
Google Scholar
[13]
V.I. Utkin, Sliding Models in Control and Optimization. New York: Springer-Verlag, (1992).
Google Scholar