[1]
W. Zou and J. Zou, Pre-grinding technology and analysis of its application key points, Science and Technology of Cement, no. 4, pp.17-21, (2008).
Google Scholar
[2]
C. Zhang, Pre-grinding equipment and its evaluation, China Building Material Equipment, no. 7, pp.22-24, (1996).
Google Scholar
[3]
X. Du, Q. Cheng and W. Lu, Hybrid fuzzy PID decoupling control using in ball mill, in Proc. International Conference on Sustainable Power Generation and Supply, vol. 1-4, pp.2494-2498, (2009).
DOI: 10.1109/supergen.2009.5347934
Google Scholar
[4]
V. Van Breusegen, L. Chen, V. Werbouck, G. Bastin, and V. Wertz, Multivariable linear quadratic control of a cement mill: An industrialapplication, Contr. Eng. Practica, vol. 2, no. 4, pp.605-611, (1994).
DOI: 10.1016/0967-0661(94)90004-3
Google Scholar
[5]
L. Magni, G. Bastin, and V. Wertz. Multivariable nonlinear predictive control of cement mills, IEEE Transactions on Control Systems Technology, vol. 7, no. 4, pp.502-508, (1999).
DOI: 10.1109/87.772166
Google Scholar
[6]
H. Xie, Z. Jiang, X. Liu, etc., Application of fuzzy control of laminar cooling for hot rolled strip, J. Materials Processing Technology, vol. 187, p.715–719, (2007).
DOI: 10.1016/j.jmatprotec.2006.11.166
Google Scholar
[7]
H. Wang and M. Jia, A fuzzy control method for ball mill system based on fill level soft sensor, in Proc. 21st Chinese Control and Decision Conference, vol. 6, pp.5888-5891, 2009.
DOI: 10.1109/ccdc.2009.5195254
Google Scholar
[8]
B. Liu, H. Su, W. Huang and J. Chu, Temperature predictive control based least squares support vector machines, Journal of Control Theory and Applications, vol. 2, no. 4, p.65–70, (2004).
DOI: 10.1007/s11768-004-0041-7
Google Scholar
[9]
J. Suykens and J. Vandewalle Least squares support vector machine classifiers, Neural Process Lett, vol. 3, no. 9, p.293–300, (1999).
Google Scholar
[10]
X. Li, G.Y. Cao and X.J. Zhu, Modeling and control of PEMFC based on least squares support vector machines, Energy Conversion and Management, vol. 47, no. 7-8, p.1032–1050, (2006).
DOI: 10.1016/j.enconman.2005.04.002
Google Scholar
[11]
C. De Souza, A. Trofino, An LMI approach to stablization of linear discrete-time periodic systems, International Journal of Control, vol. 73, no. 8, pp.696-703, (2000).
DOI: 10.1080/002071700403466
Google Scholar
[12]
M. Kothare, V. Balakrishnan, M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, vol. 32, no. 10, pp.1361-1379, (1996).
DOI: 10.1016/0005-1098(96)00063-5
Google Scholar
[13]
W. Kwon, D. Byun, Receding horzon tracking control as a predictive control and its stability properties, International Journal of Control, vol. 50, no. 5, pp.1807-1824, (1989).
DOI: 10.1080/00207178908953467
Google Scholar
[14]
K. Kim, J. Lee, W. Kwon, Intervalwise receding horizon H-infinity tracking control for discrete linear periodic systems, IEEE Transactions on Automatic Control, vol. 45, no. 4, pp.747-752, (2000).
DOI: 10.1109/9.847115
Google Scholar
[15]
G. Denicolao, Cyclomonotonicity, Riccati-Equations and periodic receding horizon control, Automatica, vol. 30, no. 9, pp.1375-1388, (1994).
DOI: 10.1016/0005-1098(94)90002-7
Google Scholar
[16]
P. Myung-June, R. Hyun-Ku, Robust control system design, Southeast University Press, pp.21-51, (1995).
Google Scholar
[17]
F. Wu, LMI-based robust model predictive control and its application to an industrial CSTR problem, Journal of Process Control, vol. 11, no. 6, pp.649-659, (2001).
DOI: 10.1016/s0959-1524(00)00052-4
Google Scholar
[18]
P. Falugi, S. Olaru and D. Dumur, Multi-model predictive control based on LMI: from the adaptation of the state-space model to the analytic description of the control law, International Journal of Control, vol. 83, no. 8, p.1548–1563, (2010).
DOI: 10.1080/00207171003736329
Google Scholar