[1]
P. Embrechts,C. Kl¨uppelberg,T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, (1997).
Google Scholar
[2]
J. Grandell, Aspects of Risk Theory, Springer-Verlag, Berlin, (1991).
Google Scholar
[3]
S. Asmussen, Ruin Probabilities, World Scientific, Singapore, (2000).
Google Scholar
[4]
O. Bjork, J. Grandell, An insensitivity property of the ruin probability, Scand. Actuar. J. (1985)148-156.
Google Scholar
[5]
T. Jiang Y.Q. Chen, Local asymptotic behavior of the survival prob-ability of the equilibrium renewal model with heavy tails, Science in China, Ser. A48(3)(2005)300-306.
DOI: 10.1360/03ys0209
Google Scholar
[6]
T. Rolski,H. Schmidli,V. Schmidt,J. Teugels, Stochastic Processes for Insurance and Finance, Wiley, New York, (1999).
DOI: 10.1002/9780470317044
Google Scholar
[7]
Q.H. Tang, An asymptotic relationship for ruin probabilities under heavy-tailed claims, Science in China, Ser. A45(5)(2002)632-639. 11.
Google Scholar
[8]
R. Leipus,J. ˘ Siaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes, Insurance MathEcon-om. 40(2007)498-508.
DOI: 10.1016/j.insmatheco.2006.07.006
Google Scholar
[9]
S.M. Ross, Stochastic Processes, Wiley, New York, (1983).
Google Scholar
[10]
S.Z. Fang, Ruin probabilities for large claims in the first type of generalized delayed renewal risk model, to appear.
Google Scholar
[11]
S. Asmussen,V. Kalashnikov,D. Konstantinides,C. Kl¨uppelberg,G. Ts tsiashvili, A local limit theoerm for random walk maxima with heavy tails, Statist. Probab. Lett. 56(4)(2002) 399-404.
DOI: 10.1016/s0167-7152(02)00033-0
Google Scholar
[12]
F.C. Kong,L. Cao. Some results about ruin probability in renewal risk model and delayed renewal risk. model, Chinese Ann. Math. . Ser. A24(1)(2003)119-128(in Chinese).
DOI: 10.4028/www.scientific.net/amr.433-440.2969
Google Scholar