[1]
Amini, M. , and Gallinari, P. (2003). Semi–supervised learning with an explicit label-error model for misclassified data. IJCAI2003.
Google Scholar
[2]
Balcan, M. , Blum, A. , Choi, P. , Lafferty, J. , Pantano, B. Rwebangira, M. , and Zhu, X. (2005).
Google Scholar
[3]
Baluja, S. (1998). Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data. Neural Information Processing Systems (NIPS).
Google Scholar
[4]
Blum, A. , and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Proceedings of the 11th Annual Conference on Computational Learning Theory.
DOI: 10.1145/279943.279962
Google Scholar
[5]
Joachims, T. (1999). Transductive inference for text classification using support vector machines. ICML1999, 200–209.
Google Scholar
[6]
Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York.
Google Scholar
[7]
Bennett, K. and Demiriz, A. (1998). Semi–Supervised Support Vector Machines. In Advances in Neural Information Processing Systems, 12, 368-374.
Google Scholar
[8]
Fung, G. , & Mangasarian, O. (2001). Semi-supervised support vector machines for unlabeled data classification. Optimization Methods and Software, 29C44.
DOI: 10.1080/10556780108805809
Google Scholar
[9]
C. Cortes and V.N. Vapnik. Support vector networks. Machine learning, 20: 273-297, (1995).
DOI: 10.1007/bf00994018
Google Scholar
[10]
V.N. Vapnik. The nature of Statistical Learning Theory. Springer Verlag, New York, (1995).
Google Scholar
[11]
A.M. Bensaid L.O. hall,J. c. Bezdek, and L.P. Clarke. Partially supervised clustering for image segmentation. Pattern Recognition, 29(5): 859- 871, (1998).
DOI: 10.1016/0031-3203(95)00120-4
Google Scholar
[12]
M. Vaidyanathan R.P. Velthuizen,P. Venugopal L.P. Clarke, and L.O. Hall. Tumor volume measurements using supervised and semisupervised mri segmentation. In Artificial Neural Networks in Engineering Conference, ANNIE(1994), (1994).
Google Scholar
[13]
J. Mill, A. Inoue. An application of fuzzy support vectors, Proceedings of the 22nd North American Fuzzy Information Processing Society, Chicago, Illinois, July 24–26, p.302– 306, (2003).
DOI: 10.1109/nafips.2003.1226801
Google Scholar
[14]
T. Inoue, S. Abe. Fuzzy support vector machines for pattern classi1cation, Proceedings of the International Joint Conference on Neural Networks, Washington DC, July 15C19, p.1449–1454, (2001).
Google Scholar
[15]
D. Tsujinishi, S. Abe. Fuzzy least squares support vector machines, Proceedings of the International Joint Conference on Neural Networks, Portland, Oregon, July 20–24, p.1599–1604, (2003).
DOI: 10.1109/ijcnn.2003.1223938
Google Scholar
[16]
S.R. Gunn, Support vector machines for classification and regression, Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton, UK, 1997, Available on http: /www. isis. ecs. soton. ac. uk/isystems/kernel.
Google Scholar
[17]
John Shawe–Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis, Cambridge, UK: Cambridge University Press, (2004).
Google Scholar