[1]
H.K. Alfares, M. Nazeeruddin: Electric load forecasting: literature survey and classification of methods, Int. Journal of Systems Science, vol. 33-1, p.23–34, (2002).
DOI: 10.1080/00207720110067421
Google Scholar
[2]
D. Srinivasan and M.A. Lee: Survey of hybrid fuzzy neural approaches to electric load forecasting, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Part 5, Vancouver, BC, p.4004–4008, (1995).
DOI: 10.1109/icsmc.1995.538416
Google Scholar
[3]
T. Haida and S. Muto: Regression based peak load forecasting using a transformation technique, IEEE Trans. on Power Systems, Vol. 9, p.1788–1794, (1994).
DOI: 10.1109/59.331433
Google Scholar
[4]
B.F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K.A. Loparo and D.J. Maratukulam: Analysis of unit commitment of improved load forecasts, IEEE Transactions on Power Systems, vol. 14, p.1342–1348, (1999).
DOI: 10.1109/59.801894
Google Scholar
[5]
T.S. Dillon, S. Sestito and S. Leung: Short term load forecasting using an adaptive neural network, Electric Power and Energy Systems, vol. 13, p.186–192, (1991).
DOI: 10.1016/0142-0615(91)90021-m
Google Scholar
[6]
A.O. Özkan, S. Kara, A. Salli, M.E. Sakarya and S. Günes: Medical diagnosis of rheumatoid arthritis disease from right and left hand Ulnar artery Doppler signals using adaptive network based fuzzy inference system (ANFIS) and MUSIC method, Advances in Engineering Software, vol. 41(12), pp.1295-1301, (2010).
DOI: 10.1016/j.advengsoft.2010.10.001
Google Scholar
[7]
A.K. Topalli, I. Erkmen and I. Topalli: Intelligent short-term load forecasting in Turkey, Electrical Power and Energy Systems, vol. 28, p.437–447, (2006).
DOI: 10.1016/j.ijepes.2006.02.004
Google Scholar
[8]
T. Yalcinoz, U. Eminoglu: Short term and medium term power distribution load forecasting by neural networks, En. Con. and Management, vol. 46, pp.1393-1405, (2005).
DOI: 10.1016/j.enconman.2004.07.005
Google Scholar
[9]
Ü.B. Filik, Ö.N. Gerek, M. Kurban: A novel modeling approach for hourly forecasting of long-term electric energy demand, Energy Conversion and Management, vol. 52, pp.199-211, (2011).
DOI: 10.1016/j.enconman.2010.06.059
Google Scholar
[10]
J.S., R. Jang: ANFIS: Adaptive-Network-based Fuzzy Inference Systems, ' Man and Cybernetics, 23, pp.665-685, May (1993).
DOI: 10.1109/21.256541
Google Scholar
[11]
Çaydaş U., Hasçalık A., Ekici S.: An adaptive neuro-fuzzy inference system model for wire-EDM, Expert Sys. with Applications, vol. 36(3) Part2, pp.6135-6139, (2009).
DOI: 10.1016/j.eswa.2008.07.019
Google Scholar
[12]
V. Kalaichelvi, D. Sivakumar, R. Karthikeyan, K. Palanikumar: Prediction of the flow stress of 6061 Al–15% SiC – MMC composites using adaptive network based fuzzy inference system, Materials & Design, 30(4), pp.1362-1370, April (2009).
DOI: 10.1016/j.matdes.2008.06.022
Google Scholar
[13]
B. Akdemir, S. Günes and B. Oran: Prediction of Aortic Diameter Values in Healthy Turkish Infants, Children and Adolescents via Adaptive Network Based Fuzzy Inference System, ICIC (1) 2008, pp.498-505, (2008).
DOI: 10.1007/978-3-540-87442-3_62
Google Scholar
[14]
Y. Narukawa, T. Murofushi and M. Sugeno: Regular fuzzy measure and representation of comonotonically additive functional, Fuzzy Sets and Systems, 112(2), pp.177-186, 1 June (2000).
DOI: 10.1016/s0165-0114(98)00138-9
Google Scholar
[15]
http: /en. wikipedia. org/wiki/Mean_absolute_percentage_error last acces: May (2011).
Google Scholar
[16]
J. Tayman and D.A. Swanson: On the validity of MAPE as a measure of population forecast accuracy, Population Research and Policy Review, vol. 18(4), pp.299-322, (1999).
DOI: 10.1023/a:1006166418051
Google Scholar
[17]
B. Akdemir, Ş. Okkesim, S. Kara and S. Güneş: Correlation-and covariance-supported normalization method for estimating orthodontic trainer treatment for clenching activity, Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine, Vol. 223 (8), pp.991-1001, November (2009).
DOI: 10.1243/09544119jeim619
Google Scholar
[18]
S. L. Hallmark, R. Souleyrette and S. Lamptey: Use of n-Fold Cross-Validation to Evaluate Three Methods to calculate Heavy Truck Annual Average Daily Traffic and Vehicle Miles Traveled, Journal of the Air & Waste Management Association, vol. 57, January (2007).
DOI: 10.1080/10473289.2007.10465292
Google Scholar