[1]
G. L. Baughman, and E. J. Weber, Transformation of dyes and related-compunds in anoxic sediment-kinetics and products, Environ. Sci. Technol. vol. 28, pp.267-276, (1994).
DOI: 10.1021/es00051a013
Google Scholar
[2]
E. J. Weber, and R. L. Adams, Chemical-mediated and sediment-mediated reduction of the azo-dye desperse-blue-79, Environ. Sci. Technol. vol. 29, pp.1163-1170, (1995).
DOI: 10.1021/es00005a005
Google Scholar
[3]
G. Liu, X. Li, J. Zhao, S. Horikoshi, and H. Hidaka, Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination, J. Mol. Catal. A vol. 153, pp.221-229, (2000).
DOI: 10.1016/s1381-1169(99)00351-9
Google Scholar
[4]
T. Yang, S. Wang, S. Tsai, and S. Lin, Intrinsic photocatalytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectance infrared Fourier transform spectroscopy, Appl. Catal. B vol. 30, pp.293-301, (2001).
DOI: 10.1016/s0926-3373(00)00241-1
Google Scholar
[5]
G. Liu, X. Li, J. Zhao, H. Hidaka, and N. Serpone, Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation, Environ. Sci. Technol. Vol. 34, pp.3982-3990, (2000).
DOI: 10.1021/es001064c
Google Scholar
[6]
K. Hashimoto, H. Irie, and A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jpn. J. Appl. Phys. vol. 44, pp.8269-8285, (2005).
DOI: 10.1143/jjap.44.8269
Google Scholar
[7]
Z. Q. Gao, S. G. Yang, N. Ta, and C. Sun, Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions, J. Hazard. Mater. vol. 145, pp.424-430, (2007).
DOI: 10.1016/j.jhazmat.2006.11.042
Google Scholar
[8]
W. J. Zhang, K. L. Wang, Y. Yu, and H. B. He, TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange, Chem. Eng. J. vol. 163, pp.62-67, (2010).
DOI: 10.1016/j.cej.2010.07.042
Google Scholar
[9]
C. He, X. Z. Li, N. Graham, and Y. Wang, Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application, Appl. Catal. A vol. 305, pp.54-63, (2006).
DOI: 10.1016/j.apcata.2006.02.051
Google Scholar
[10]
T. A. McMurray, P. Dunlop, and J. A. Byrne, The photocatalytic degradation of atrazine on nanoparticulate TiO2 films, J. Photochem. Photobiol. A, vol. 182, pp.43-51, (2006).
DOI: 10.1016/j.jphotochem.2006.01.010
Google Scholar
[11]
N. Arconada , R. Portelab, J. M. Coronado, and Y. Castro, Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel, Appl. Catal. B vol. 86, pp.1-7, (2009).
DOI: 10.1016/j.apcatb.2008.07.021
Google Scholar
[12]
W. Y. Gan , H. J. Zhao, and R. Amal, Photoelectrocatalytic activity of mesoporous TiO2 thin film electrodes, Appl. Catal. A vol. 354, pp.8-16, (2009).
DOI: 10.1016/j.apcata.2008.10.054
Google Scholar
[13]
A. O. Ibhadon, G. M. Greenway, Y. Yue, P. Falaras, and D. Tsoukleris, The photocatalytic activity and kinetics of the degradation of an anionic azo-dye in a UV irradiated porous titania foam, Appl. Catal. B vol. 84 pp.351-355, (2008).
DOI: 10.1016/j.apcatb.2008.04.019
Google Scholar
[14]
S. Q. Zhang, D. L. Jiang, and H. J. Zhao, Development of chemical oxygen demand on-Line monitoring system based on a photoelectrochemical degradation principle, Envir. Sci. Technol. vol. 40, pp.2363-2368, (2006).
DOI: 10.1021/es052018l
Google Scholar
[15]
A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. vol. 95, pp.735-758, (1995).
DOI: 10.1021/cr00035a013
Google Scholar