Methyl Orange Photoelectrocatalytic Degradation Using Porous TiO2 Film Electrode in NaH2PO4 Solution

Article Preview

Abstract:

Porous TiO2 film was prepared by a sol-gel method using PEG1000 as pore forming template. The porous film and normal film were used as electrodes in a photoelectrocatalytic reactor. The functions of applied potential and concentration of NaH2PO4 to the photoelectrocatalytic degradation process of methyl orange were investigated. The results show that methyl orange cannot be degraded solely by the applied potential. Under the applied potential of 2 V, 49.9% of the initial dye can be removed on the normal TiO2 film electrode, which is much better than the 31.1% removal rate on the porous TiO2 film electrode. The normal TiO2 film electrode has better performance than the porous TiO2 film in the whole NaH2PO4 concentration range. After 80 min of reaction, degradation rate is 93.7% on the normal TiO2 film electrode. After 100 min of reaction, degradation rate is 89.7% on the porous TiO2 film electrode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

411-415

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. L. Baughman, and E. J. Weber, Transformation of dyes and related-compunds in anoxic sediment-kinetics and products, Environ. Sci. Technol. vol. 28, pp.267-276, (1994).

DOI: 10.1021/es00051a013

Google Scholar

[2] E. J. Weber, and R. L. Adams, Chemical-mediated and sediment-mediated reduction of the azo-dye desperse-blue-79, Environ. Sci. Technol. vol. 29, pp.1163-1170, (1995).

DOI: 10.1021/es00005a005

Google Scholar

[3] G. Liu, X. Li, J. Zhao, S. Horikoshi, and H. Hidaka, Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination, J. Mol. Catal. A vol. 153, pp.221-229, (2000).

DOI: 10.1016/s1381-1169(99)00351-9

Google Scholar

[4] T. Yang, S. Wang, S. Tsai, and S. Lin, Intrinsic photocatalytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectance infrared Fourier transform spectroscopy, Appl. Catal. B vol. 30, pp.293-301, (2001).

DOI: 10.1016/s0926-3373(00)00241-1

Google Scholar

[5] G. Liu, X. Li, J. Zhao, H. Hidaka, and N. Serpone, Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation, Environ. Sci. Technol. Vol. 34, pp.3982-3990, (2000).

DOI: 10.1021/es001064c

Google Scholar

[6] K. Hashimoto, H. Irie, and A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jpn. J. Appl. Phys. vol. 44, pp.8269-8285, (2005).

DOI: 10.1143/jjap.44.8269

Google Scholar

[7] Z. Q. Gao, S. G. Yang, N. Ta, and C. Sun, Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions, J. Hazard. Mater. vol. 145, pp.424-430, (2007).

DOI: 10.1016/j.jhazmat.2006.11.042

Google Scholar

[8] W. J. Zhang, K. L. Wang, Y. Yu, and H. B. He, TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange, Chem. Eng. J. vol. 163, pp.62-67, (2010).

DOI: 10.1016/j.cej.2010.07.042

Google Scholar

[9] C. He, X. Z. Li, N. Graham, and Y. Wang, Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application, Appl. Catal. A vol. 305, pp.54-63, (2006).

DOI: 10.1016/j.apcata.2006.02.051

Google Scholar

[10] T. A. McMurray, P. Dunlop, and J. A. Byrne, The photocatalytic degradation of atrazine on nanoparticulate TiO2 films, J. Photochem. Photobiol. A, vol. 182, pp.43-51, (2006).

DOI: 10.1016/j.jphotochem.2006.01.010

Google Scholar

[11] N. Arconada , R. Portelab, J. M. Coronado, and Y. Castro, Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel, Appl. Catal. B vol. 86, pp.1-7, (2009).

DOI: 10.1016/j.apcatb.2008.07.021

Google Scholar

[12] W. Y. Gan , H. J. Zhao, and R. Amal, Photoelectrocatalytic activity of mesoporous TiO2 thin film electrodes, Appl. Catal. A vol. 354, pp.8-16, (2009).

DOI: 10.1016/j.apcata.2008.10.054

Google Scholar

[13] A. O. Ibhadon, G. M. Greenway, Y. Yue, P. Falaras, and D. Tsoukleris, The photocatalytic activity and kinetics of the degradation of an anionic azo-dye in a UV irradiated porous titania foam, Appl. Catal. B vol. 84 pp.351-355, (2008).

DOI: 10.1016/j.apcatb.2008.04.019

Google Scholar

[14] S. Q. Zhang, D. L. Jiang, and H. J. Zhao, Development of chemical oxygen demand on-Line monitoring system based on a photoelectrochemical degradation principle, Envir. Sci. Technol. vol. 40, pp.2363-2368, (2006).

DOI: 10.1021/es052018l

Google Scholar

[15] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. vol. 95, pp.735-758, (1995).

DOI: 10.1021/cr00035a013

Google Scholar