[1]
R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for the wave equation: a pedestrian., IEEE Antennas and Propagation Magazine, 35(3): 7-12, June (1993).
DOI: 10.1109/74.250128
Google Scholar
[2]
Sadasiva M. Rao, Donald R. Wilton, and Allen W. Glison. 'Electromagnetics scattering and radiation by surfaces of aarbitary shapes. IEEE Transactions on Antennas and Propagation, 30(3): 409-418, May (1982).
Google Scholar
[3]
J. M. Song and W.C. Chew. Fast Multipole method solution of three dimensional integral equation., Antennas and Propagation Socity International Symposium: AP-S. Digest, 3: 1528-1531, June (1995).
DOI: 10.1109/aps.1995.530867
Google Scholar
[4]
W.C. Chew, J.M. Jin, E. Michielssen, J. Song, Fast and Efficient Algorithms in Computational Electromagnetics., Boston: artech House, (2001).
Google Scholar
[5]
Alex C. Woo, Helen T. G. Wang, Michael J. Schuh, and Michael L. Sanders. 'Benchmark radar targets for the validation of computational electromagnetics programs. IEEE Antennas and Propagation Magazine, 35(1): 84-89, February (1993).
DOI: 10.1109/74.210840
Google Scholar
[6]
J. Faison. The Electromagnetics Code Consortium., IEEE Antennas and Propagation Magazine, 30: 19-23, February (1990).
Google Scholar
[7]
Walton C. Gibson. The method of Moment in Electromagnetics., CRC press, (2008).
Google Scholar
[8]
Jan Fostier. Parallel Techniques for Fast Multipole Algorithms., Doctor thesis 2008-(2009).
Google Scholar
[9]
L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. , vol. 73, 325-348, (1987).
Google Scholar
[10]
S. Velamparambil and W.C. Chew, Parallelization of multilevel fast multipole algorithm on distributed memory computers, Tech. Rep. 13-01, Center for Computational Electromagnetics, University of Illinois at Urbana-Champaign, (2001).
Google Scholar
[11]
Jan Fostier. Parallel Multilevel Fast Multipole Algorithm for GRID computing allowing Full-Wave Electromagnetic Simulations., Figure 4. RCS of NASA almond: (a) at 7GHz. (b)at 9. 92GHz Figure 5. RCS of(a) EMCC ogive: at 9. 0 GHz. (b) EMCC double ogive: at 9. 0 GHz. Figure 6. RCS of (a)EMCC cone-sphere: at 9. 0 GHz. (b)EMCC cone-sphere with gap: at 9. 0 GHz Figure 7. (a) F16 mesh model, (b)RCS of f16 at 2. 12GHz.
DOI: 10.7717/peerj.7832/supp-1
Google Scholar