Ant Colony Algorithm Application in Water Treatment Control System Parameter Tuning

Article Preview

Abstract:

In Thermal Power Generation and heating Water Treatment process, duo to the water supply pipeline pressure and flow changes, the traditional PID control system controller cannot the prompt track response, PH value of water changes in a larger range, increased damage to the boiler pipes. In order to solve the problem which the control parameters optimizes, improves the system performance, proposed a new Ant colony algorithm PID parameters optimization strategy, this solution can combine characteristics that Ant colony algorithm can fast find the most superior parameter solution stably and PID can precise adjustment. In the control process, taken the PID parameters as a colony of ants, used to control the absolute error integral function as the optimization objective, dynamically adjust the PID control parameters in the control process, so as to realize the PID parameters on-line tuning, to improve real-time of the water treatment control system, improved the stability of the system, and achieve a better control effect.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

4354-4360

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sflva Guillermo J, Datta Anfruddha, Bhattacharyya S P. Newresults on the synthesis of PID controllers [J]. IEEE Transactions on Auto-matic Control, 2002, 47(2): 241-252.

Google Scholar

[2] Bamieh Bassam, Pagannini Fernando, Dahleh Munther A. Distributed control of spatially Invariant systems [J]. IEEE Transactions on Automatic Control, 2002, 47(7): 1091-1107.

DOI: 10.1109/tac.2002.800646

Google Scholar

[3] M Zhuang, D P Atherton. Automatic tuning of optimum PID controllers [J]. IEE PROCEEDINGS-D, 1993, 140(3): 216-224.

DOI: 10.1049/ip-d.1993.0030

Google Scholar

[4] C C Hang, K J Astrom, W K Ho. Refinements of the Ziegler-Nichols tuning formula[J]. IEE Proceeding-D, 1991, 138(2): 111 -118.

DOI: 10.1049/ip-d.1991.0015

Google Scholar

[5] MA Xiang, WANG Shao-bo. Design of a kind of intelligent self-adjusting PID control system and application of stairstep singal [J]. Journal of Fuzhou University(Natural Science) , 2003, 31(4) 430-432.

Google Scholar

[6] HAN HUA, LUO An, YANG Yong , A nonlinear PID controller based on genetic tuning algorithm [J] . Control and Decision, 2005, 20(4): 448-454.

Google Scholar

[7] Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transaction on Systems, 1996, 26(1): 1-26.

DOI: 10.1109/3477.484436

Google Scholar

[8] Dorigo M, Grmbardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transaction on Evolutionary Computation, 1997, 1(1): 53-66.

DOI: 10.1109/4235.585892

Google Scholar

[9] Corlorni A, Dorigo M, Maniezzo V, et al. Ant system for job-shop scheduling[J]. Belgian J Oper Res Statist Comput Sci, 1994, 34(1): 34-53.

Google Scholar

[10] S N Huang, KK Tan, TH Lee. Adaptive motion control using neural network approximations[J]. Automatica, 2002, 38: 227 -233.

DOI: 10.1016/s0005-1098(01)00192-3

Google Scholar