[1]
Chen B-J, Chang M-W, Lin C-J. Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001 [J]. IEEE Transactions on Power Systems, 2004 (4): 1821-1830.
DOI: 10.1109/tpwrs.2004.835679
Google Scholar
[2]
Senjyu T, Mandal P, Uezato K, Funabashi T. Next Day Load Curve Forecasting Using Hybrid Correction Method [J]. IEEE Transactions on Power Systems, 2005 (1): 102-109.
DOI: 10.1109/tpwrs.2004.831256
Google Scholar
[3]
Saini L M, Soni M K. Artificial Neural Network-Based Peak Load Forecasting Using Conjugate Gradient Methods [J]. IEEE Transactions on Power Systems, 2002 (3): 907-912.
DOI: 10.1109/tpwrs.2002.800992
Google Scholar
[4]
Chu W-C, Chen Y-P, Xu Z-W, Lee W-J. Multiregion Short-Term Load Forecasting in Consideration of HI and Load/Weather Diversity [J]. IEEE Transactions on Industry Applications, 2011 (1): 232-237.
DOI: 10.1109/tia.2010.2090440
Google Scholar
[5]
Wang Y, Xia Q, Kang C. Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting [J]. IEEE Transactions on Power Systems, 2011 (2): 500-507.
DOI: 10.1109/tpwrs.2010.2052638
Google Scholar
[6]
Drezga I, Rahman S. Input Variable Selection for ANN-Based Short-Term Load Forecasting [J]. IEEE Transactions on Power Systems, 1998 (4): 1238-1244.
DOI: 10.1109/59.736244
Google Scholar
[7]
Haida T, Muto S. Regression Based Peak Load Forecasting Using A Transformation Technique [J]. IEEE Transactions on Power Systems, 1994 (4): 1788-1794.
DOI: 10.1109/59.331433
Google Scholar
[8]
Senjyu T, Mandal P, Uezato K, Funabashi T. Next Day Load Curve Forecasting Using Recurrent Neural Network Structure [J]. IEE Proceedings on Generation, Transmission and Distribution, 2004 (3): 388-394.
DOI: 10.1049/ip-gtd:20040356
Google Scholar
[9]
Ling S H, Leung F H F, Lam H K, Tam P K S. Short-Term Electric Load Forecasting Based on a Neural Fuzzy Network [J]. IEEE Transactions on Industrial Electronics, 2003 (6): 1305-1316.
DOI: 10.1109/tie.2003.819572
Google Scholar
[10]
Fan S, Chen L. Short-Term Load Forecasting Based on an Adaptive Hybrid Method [J]. IEEE Transactions on Power Systems, 2006 (1): 392-401.
DOI: 10.1109/tpwrs.2005.860944
Google Scholar
[11]
Kim K-H, Youn H-S, Kang Y-C. Short-Term Load Forecasting for Special Days in Anomalous Load Conditions Using Neural Networks and Fuzzy Inference Method [J]. IEEE Transactions on Power Systems, 2000 (2): 559-565.
DOI: 10.1109/59.867141
Google Scholar
[12]
Chen Y, Luh P B, Guan C, Zhao Y, Michel L D, Coolbeth M A, Friedland P B, Stephen J. Rourke. Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks [J]. IEEE Transactions on Power Systems, 2010 (1): 322-330.
DOI: 10.1109/tpwrs.2009.2030426
Google Scholar
[13]
Maksimovich S M, Shiljkut V M. The Peak Load Forecasting Afterwards Its Intensive Reduction [J]. IEEE Transactions on Power Delivery, 2009 (3): 1552-1559.
DOI: 10.1109/tpwrd.2009.2014267
Google Scholar
[14]
Zhang M G. Short-Term Load Forecasting Based on Support Vector Machines Regression. Proc. 2005 Int. Conf. Machine Learning and Cybernetics. 2005: 4310-4314.
DOI: 10.1109/icmlc.2005.1527695
Google Scholar
[15]
Li G, Cheng C T, Lin J Y, Zeng Y. Short-Term Load Forecasting Using Support Vector Machine With SCE-UA Algorithm. Proc. 3rd Int. Conf. Natural Computation (ICNC 2007). 2007: 290-294.
DOI: 10.1109/icnc.2007.660
Google Scholar
[16]
Breiman L, Friedman J H, Olshen R. Classification and Regression Tree [M]. CRC Press, (1984).
Google Scholar
[17]
LI Z-Y, WU W-L. Classification of power quality combined disturbances based on phase space reconstruction and support vector machines [J]. Journal of Zhejiang Univ. - Sci. A, 2008 (2): 173-181.
DOI: 10.1631/jzus.a071261
Google Scholar
[18]
Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge: Cambridge University Press, (2000).
DOI: 10.1017/cbo9780511801389
Google Scholar