[1]
Gordon N.J., Salmond D.J. and Smith A.F.M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE-Proceedings-F, 140, pp.107-113, (1993).
DOI: 10.1049/ip-f-2.1993.0015
Google Scholar
[2]
Kitagawa G., Monte carlo filter and smoother for non-Gaussian nonlinear state space models, Journal of Computational and Graphical Statistics, vol. 5, no. 1, pp.1-25, (1996).
DOI: 10.1080/10618600.1996.10474692
Google Scholar
[3]
Doucet A.; Godsill S.; Andrieu C., On Sequential Monte Carlo Methods for Bayesian Filtering, Statistics and Computing, vol. 10, no. 3, pp.197-208, (2000).
DOI: 10.1023/a:1008935410038
Google Scholar
[4]
Arulampalam M.S., Maskell S., Gordon N., Clapp T., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol. 50, no. 2, pp.174-188, (2002).
DOI: 10.1109/78.978374
Google Scholar
[5]
Ristic B., Arulampalam S., Gordon N., Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, (2004).
Google Scholar
[6]
J. Maccormick, A. Blake, A probabilistic exclusion principle for tracking multiple object, International Journal of Computer Vision, vol. 39, no. 1, pp.57-71, (2000).
Google Scholar
[7]
Zia Khan, Balch T., Dellaert F., Efficient Particle Filter-Based Tracking of Multiple Interacting Targets Using an MRF-based Motion Model, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp.254-259, Oct. (2003).
DOI: 10.1109/iros.2003.1250637
Google Scholar
[8]
Amit Banerjee, Philippe Burlina, Efficient particle filtering via sparse kernel density estimation, IEEE Transactions on Image Processing archive, vol. 19, no. 9, pp.27-31, Sept. (2010).
DOI: 10.1109/tip.2010.2047667
Google Scholar