[1]
Ayman El-Baz, Georgy Gimel'farb, Ahmed Elnakib, Robert Falk and Mohamed Abou El-Ghar. Fast, Accurate Unsupervised Segmentation of 3D Magnetic Resonance Angiography. Atherosclerosis Disease Management, Part 3, pp.411-432, (2011).
DOI: 10.1007/978-1-4419-7222-4_14
Google Scholar
[2]
P.F. Felzenszwalb and D.P. Huttenlocher. Eficient graph-based image segmentation. Int. Jour. Computer Vision, 59(2), p.167–181, Sep (2004).
DOI: 10.1023/b:visi.0000022288.19776.77
Google Scholar
[3]
Lesage, D., Angelini, E. D., Bloch, I., and Funka-Lea, G. A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Medical Image Analysis, 13(6), p.819–845, (2009).
DOI: 10.1016/j.media.2009.07.011
Google Scholar
[4]
Holtzman-Gazit, M., Kimmel, R., Peled, N., and Goldsher, D. Segmentation of thin structures in volumetric medical images. IEEE Transactions on Image Processing, 15, p.354–363, (2006).
DOI: 10.1109/tip.2005.860624
Google Scholar
[5]
Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y., and Dohi, T. A variational method for geometric regularization of vascular segmentation in medical images. IEEE Transactions on Image Processing, 17(8), p.1295–1312, (2008).
DOI: 10.1109/tip.2008.925378
Google Scholar
[6]
Gooya, A., Dohi, T., Sakuma, I., and Liao, H. R-PLUS: a Riemannian anisotropic edge detection scheme for vascular segmentation. In MICCAI'08: Proceedings of the 11th international conference on medical image computing and computer-assisted intervention—Part I (p.262.
DOI: 10.1007/978-3-540-85988-8_32
Google Scholar
[7]
Cohen, L. D., and Deschamps, T. Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Computer Methods in Biomechanics and Biomedical Engineering, 10(4), p.289–305, (2007).
DOI: 10.1080/10255840701328239
Google Scholar
[8]
M. Descoteaux, L. Collins and K. Siddiqi. A Multi-Scale Geometric Flow for Segmenting Vasculature in MRI : Theory and Validation. Medical Image Analysis, 12(4), pp.497-513. August (2008).
DOI: 10.1016/j.media.2008.02.003
Google Scholar
[9]
Law, M. W. K., and Chung, A. C. S. Weighted local variancebased edge detection and its application to vascular segmentation in magnetic resonance angiography. IEEE Transactions on Medical Imaging, 26(9), p.1224–1241, (2007).
DOI: 10.1109/tmi.2007.903231
Google Scholar
[10]
Manniesing, R., Viergever, M. A., and Niessen, W. J. (2007). Vessel axis tracking using topology constrained surface evolution. IEEE Transactions on Medical Imaging, 26(3), p.309–316, (2007).
DOI: 10.1109/tmi.2006.891503
Google Scholar
[11]
Nemitz, O., Rumpf, M., Tasdizen, T., and Whitaker, R. Anisotropic curvature motion for structure enhancing smoothing of 3D MR angiography data. Journal of Mathematical Imaging and Vision, 27(3), p.217–229. (2007).
DOI: 10.1007/s10851-006-0645-2
Google Scholar
[12]
Hernández Hoyos, M., Serfaty, J. M., Maghiar, A., Mansard, C., Orkisz, M., Magnin, I. E., & Douek, P. Evaluation of semiautomatic arterial stenosis quantification. International Journal of Computer Assisted Radiology, 1(3), p.167–175, (2006).
DOI: 10.1007/s11548-006-0049-1
Google Scholar
[13]
Orkisz, M., Flórez Valencia, L., and Hernández Hoyos,M. Models, algorithms and applications in vascular image segmentation. Machine Graphics and Vision, 17(1), p.5–33, (2008).
Google Scholar
[14]
Ming-Yuen Chan, Yingcai Wu, Huamin Qu, Albert C.S. Chung and Wilbur C.K. Wong. Mip-Guided Vascular Image Visualization with Multi-Dimensinal Transfer Function. Lecture Notes in Computer Science, Volume 4035, pp.372-384, (2006).
DOI: 10.1007/11784203_32
Google Scholar
[15]
Xiang Shiming, Chen Rui, Deng Yu, Li Hua. Motion Segmentation via On-line Gaussian Mixture Model and Texture[J]. Journal of Computer Aided Design & Computer Graphics, 17(07), pp.1504-1509, (2005).
Google Scholar
[16]
Xiang Rihua, Wang Runsheng. A Range Image Segmentation Algorithm Based on Gaussian Mixture Model[J]. Journal of Software, 14(07), pp.1250-1257, (2003).
Google Scholar
[17]
Greenspan, H. Ruf, A. Goldberger, J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images[J]. IEEE Transactions on Medical Imaging, 25(09), pp.1233-1245, (2006).
DOI: 10.1109/tmi.2006.880668
Google Scholar
[18]
Lu Zongqing. Research on Optimal Flow Computation for Motion Image Analysis[D]: Xidian unversity, China, (2007).
Google Scholar
[19]
Feng Xu, Xingce Wang, Mingquan Zhou, Zhongke Wu, Xinyu Liu. Segmentation Algorithm of Brain Vessel Image Based on SEM Statistical Mixture Model. The 7th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'10). pp.1830-1833, Aug. (2010).
DOI: 10.1109/fskd.2010.5569429
Google Scholar