Measurement of Fractional Optical Vortex by a Ring-Type Multi-Pinhole Interferometer

Article Preview

Abstract:

We presented a method for measuring the topological charge of a Fractional optical vortex (FOV) by a ring-type multi-pinhole interferometer (RMPI). We retrieved the sampled phase of the FOV passing through a ring-type multi-pinhole plate from the Fourier transform of a single far-field diffraction intensity pattern, and found the phase of FOV around the center approximately be linear with the azimuthal angle, the slope of the phase to the azimuthal angle at the linear part is equal to the topological charge of the FOV. Thus we proposed a method for measuring the l state and determining orbital angular momentum (OAM) of a FOV based on the property.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

6339-6344

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Physical Review A,vol. 45, pp.8185-8189, June (1992).

DOI: 10.1103/physreva.45.8185

Google Scholar

[2] A. Vaziri, J. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, Concentration of Higher Dimensional Entanglement: Qutrits of Photon Orbital Angular Momentum, Physical Review Letters, vol. 91, pp.227902-227905, November (2003).

DOI: 10.1103/physrevlett.91.227902

Google Scholar

[3] A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, Nonlocality of high-dimensional two-photon orbital angular momentum states, Physical Review A, vol. 72, pp.52114-52117, November (2005).

DOI: 10.1103/physreva.72.052114

Google Scholar

[4] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Entanglement of the orbital angular momentum states of photons, Nature, vol. 412, pp.313-316, July (2001).

DOI: 10.1038/35085529

Google Scholar

[5] G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, Free-space information transfer using light beams carrying orbital angular momentum, Optics Express, vol. 12, pp.5448-5456, November (2004).

DOI: 10.1364/opex.12.005448

Google Scholar

[6] J. E. Curtis and B. A. Koss and D. G. Grier, Dynamic holographic optical tweezers, Optics Communications, vol. 207, pp.169-175, June (2002).

DOI: 10.1016/s0030-4018(02)01524-9

Google Scholar

[7] K. Ladavac and D. Grier, Microoptomechanical pumps assembled and driven by holographic optical vortex arrays, Optics Express, vol. 12, pp.1144-1149, March (2004).

DOI: 10.1364/opex.12.001144

Google Scholar

[8] H. Martin , Photon Orbital Angular Momentum in Astrophysics, , Astrophysical J., vol. 597, pp.1266-1285, July (2003).

Google Scholar

[9] G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, Optical vortices with starlight, Astronomy & Astrophysics, vol. 488, pp.1159-1165, September (2008).

DOI: 10.1051/0004-6361:200810469

Google Scholar

[10] M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, Laser modes with helical wave fronts , Physics Review A, vol. 49, pp.3119-3122, April (1994).

DOI: 10.1103/physreva.49.3119

Google Scholar

[11] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, Measuring the Orbital Angular Momentum of a Single Photon, Physical Review Letters, vol. 88, pp.257901-4. June (2002).

DOI: 10.1103/physrevlett.88.257901

Google Scholar

[12] J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, Interferometric Methods to Measure Orbital and Spin, or the Total Angular Momentum of a Single Photon, Physical Review Letters, vol. 92, pp.013601-4, January (2004).

DOI: 10.1103/physrevlett.92.013601

Google Scholar

[13] S. Tao, X. Yuan, J. Lin, X. Peng, and H. Niu, Fractional optical vortex beam induced rotation of particles, Optics Express, vol. 13, pp.7726-7731, September (2005).

DOI: 10.1364/opex.13.007726

Google Scholar

[14] C. Guo and S. Yue and G. Wei, Measuring the orbital angular momentum of optical vortices using a multipinhole plate, Applied Physics Letters, vol. 94, pp.231104-3. June (2009).

DOI: 10.1063/1.3151920

Google Scholar

[15] J. Leach and E. Yao and M. J. Padgett, Observation of the vortex structure of a non-integer vortex beam, New Journal of Physics, vol. 6, p.71, July (2004).

DOI: 10.1088/1367-2630/6/1/071

Google Scholar

[16] G. C. G. Berkhout and M. W. Beijersbergen, Method for Probing the Orbital Angular Momentum of Optical Vortices in Electromagnetic Waves from Astronomical Objects, Physical Review Letters, vol. 101, pp.100801-4, September (2008).

DOI: 10.1103/physrevlett.101.100801

Google Scholar

[17] J. Miao, T. Ishikawa, E. H. Anderson, and K. O. Hodgson, Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method, Physical Review B, vol. 67, pp.174104-6, May (2003).

DOI: 10.1103/physrevb.67.174104

Google Scholar

[18] J. C. H. Spence and M. R. Howells, Coherent Diffractive Imaging with X-rays and Electrons, AIP Conf. Proc. Eighth International Conference on Synchrotron Radiation Instrumentation, AIP Conf. Proc., May 2004, pp.1372-1375.

DOI: 10.1063/1.1758057

Google Scholar