[1]
Collins R, et al. A system for video surveillance and monitoring[J]. Carnegie Mellon University's Technical Report, (2000).
Google Scholar
[2]
W. Hu, T. Tan, L. Wang, S. Maybank. A Survey on Visual Surveillance of Object Motion and Behaviors [J], IEEE Trans, SMC. 2004, 34: 334-352.
DOI: 10.1109/tsmcc.2004.829274
Google Scholar
[3]
Oliver N M, Rosario B, Pentland A P. A Bayesian computer vision system for modeling human interactions [J], IEEE Transactions on pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843.
DOI: 10.1109/34.868684
Google Scholar
[4]
Elgammal A., Harwood D., Davis L.S. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance[J], IEEE, 2002, 90(7): 1151-1163.
DOI: 10.1109/jproc.2002.801448
Google Scholar
[5]
B. Han, D. Comaniciu, L. Davis. Sequential kernel density approximation through mode propagation: applications to background modeling [J]. ACCV: Asian Conf. on Computer Vision, (2004).
Google Scholar
[6]
T. Alexandropoulos, V. Loumos and E. Kayafas, A Block Clustering Technique for Real-time Object Detection on a Static Background, 2nd International IEEE Conference on Intelligent Systems, 2004(1). 169-173.
DOI: 10.1109/is.2004.1344659
Google Scholar
[7]
Stauffer C, Grimson W.E.L. Learning Patterns of Activity Using Real-time Tracking, IEEE Transactions on Pattern Analysis & Machine Intelligence. 2000. 22 (8). 747-757.
DOI: 10.1109/34.868677
Google Scholar
[8]
P. Wayne Power, Johann A. Schoonees . Understanding Background Mixture Models for Foreground Segmentation. Proceeding Image and Vision Computing, New Zealand 2002. 267-271.
Google Scholar