Stabilization of Networked Control Systems with Uncertain Parameters

Article Preview

Abstract:

This paper addresses the problem of stabilizing linear continuous-time systems with uncertain parameters, where sensors, controllers and plants are connected by a digital communication channel. A necessary and sufficient condition for stabilization of linear uncertain systems is derived. The method to be proposed here relies on linear matrix inequalities. Simulation results show the validity of the proposed scheme.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

7060-7066

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Martion. Jump Linear Systems in Automatic Control, New York: Marcel Dekker, (1990).

Google Scholar

[2] C. E. de Souza and M. D. Fragose, control for linear systems with Markovian jumping parameters, Control Theory Adv. Tech, wol. 9, pp.457-466, (1993).

Google Scholar

[3] Y. Y. Cao and J. Lam, Stochastic stability and control for discrete-time jump linear systems with time delay, J. Franklin Inst, vol. 336, pp.1263-1281, (1999).

DOI: 10.1016/s0016-0032(99)00035-6

Google Scholar

[4] S. Xu and T. Chen, Tobust control for uncertain discrete-time sotochastic bilinear systems with Markovian switching, Int.J. Robust Nonlin Control, vol. 15, no. 5, pp.201-217, (2005).

DOI: 10.1002/rnc.981

Google Scholar

[5] Y. Kang, J. F. Zhang and S. S. Ge, Robust output feedback control of uncertain Markovian jump systems with mode-dependent time-delay, Int.J. Control, vol. 81, no. 9, pp.2070-2077, sep. (2007).

DOI: 10.1109/chicc.2006.280546

Google Scholar

[6] J. Lam, Z. Shu, S. Xu and E. K. Boukas, Robust control of descriptor discrete-time Markovian jump systems, Int.J. Control, vol. 80, no. 3, pp.374-385, sep. (2007).

DOI: 10.1080/00207170600999322

Google Scholar

[7] L. Zhang and E. K. Boukas, Discrete-time Markovian jump linear systems with partly unknown transition probabilities filtering problem, in Proc. Amer. Control Conf, pp.2272-2277, (2006).

DOI: 10.1109/acc.2008.4586830

Google Scholar

[8] L. Zhang, E. K. Boukas, and J. Lam, Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities, IEEE Trans. Autom. Control, vol. 53, no. 10, pp.2458-2464, Oct. (2008).

DOI: 10.1109/tac.2008.2007867

Google Scholar

[9] D. Liberzon and A. S. Morse, Basic problem in stability and design of switched systems, IEEE Control Syst. Mag, vol. 19, no. 5, pp.59-70, (1999).

Google Scholar

[10] D. D. Siljak, Decentralized Control of Complex Systems, Ser, Mathematics in Science and Engineering. Boston, MA: Academic Press Inc, vol. 81, (1991).

Google Scholar

[11] C. C. Tsai and A. H. Haddad, Averaging aggregation and optimal control of singularly pertubed stochastic hybrid systems, Int. J. Control, vol. 68, no. 1, pp.31-50, (1997).

DOI: 10.1080/002071797223712

Google Scholar

[12] O. L. V. Costa, and J. B. R. Do, Continuous-time state-feedback control of Markovian jump linear systems via convex analysis, Automatica, vol. 35, pp.259-268, (1999).

DOI: 10.1016/s0005-1098(98)00145-9

Google Scholar

[13] M. Chow and Y. Tipsuwan, Network-based control systems: a tutorial, " In Proceedings of IECON, 01: the 27th annual conference of the IEEE industrial electronics society, pp.1593-1602, (2001).

DOI: 10.1109/iecon.2001.975529

Google Scholar

[14] J. Nilsson and B. Bernhardsson, Wittenmark, stochastic analysis and control of real-time system with random time delays, Automatica, vol. 34, no. 1, pp.57-64, Jan. (1998).

DOI: 10.1016/s0005-1098(97)00170-2

Google Scholar

[15] G. Walsh, H. Ye and L. Bushnell, Stability analysis of networked control systems, IEEE Trans. Control Systems Technology, vol. 10, no. 2, pp.438-446, Feb. (1998).

DOI: 10.1109/87.998034

Google Scholar

[16] W. Zhang, M. Branicky and S. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, vol. 21, no. 1, pp.84-99, Jan. (2001).

Google Scholar

[17] G. C. Goodwin, H. Haimovich, D. E. Quevedo, and J. S. Welsh A moving horizon approach to networked control system design, IEEE Control Systems Magazine, vol. 49, no. 9, pp.1427-1445, Nov. (2004).

DOI: 10.1109/tac.2004.834132

Google Scholar

[18] D. Yue, Q. L. Han and J. Lam, Network-based robust control of systems with uncertainty, Automatica, vol. 41, no. 6, pp.999-1007, (2005).

Google Scholar

[19] H. Gao and T. Chen, estimation for uncertain systems with limited communication capacity, IEEE Trans. Automat. Control, vol. 52, no. 11, pp.2071-2084, Nov. (2007).

DOI: 10.1109/tac.2007.908316

Google Scholar

[20] J. Baillieul, Feedback designs in information based control, In Stochastic Theory and Control Proceedings of a Workshop Held in Lawrence, Kansas, B. Pasik-Duncan, Ed. New York: Springer-Verlag, pp.35-57, (2001).

DOI: 10.1007/3-540-48022-6_3

Google Scholar