Dynamic Output Feedback Control with a Preview of Disturbance

Article Preview

Abstract:

This paper addresses the dynamic output feedback stabilization problem for linear time-invariant systems where the process disturbance preview is available to the controller via communication networks. A lower bound of data rates of communication channels, above which there exists a feedback control policy to stabilize the unstable plant with unbounded disturbance, is presented. Furthermore, the problem of bandwidth allocation in the communication channel is analyzed based on the system dynamics. Simulation results show the validity of the proposed scheme.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

7089-7096

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Y. Xu and J. Law, Improved velay-dependent stability criteria for time-delay systems, IEEE trans. Automat. Control, vol. 50, no. 3, pp.384-387, (2005).

DOI: 10.1109/tac.2005.843873

Google Scholar

[2] J. Xiong and J. Lam, Stablilization of linear systems over networks with bounded pocket loss, Automatic, vol. 43, pp.80-87, (2007).

Google Scholar

[3] E. Fridman and U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Automat. Control, vol. 47, no. 11, pp.1931-1937, (2002).

DOI: 10.1109/tac.2002.804462

Google Scholar

[4] M. Ya, L. Chu and T. G. Wang, Stabilization of networked control systems with data packet dropout and transmission delays continuous-time case, European Journal of Control, vol. 11, no. 1, pp.42-55, (2005).

DOI: 10.3166/ejc.11.40-49

Google Scholar

[5] F. W. Yang, Z. D. Wang, Y. S. Hary and M. Gani, H∞ control for networked systems with randow communication delays, IEEE Trans. Automat. Control, vol. 51, no. 23, pp.511-518, (2006).

DOI: 10.1109/tac.2005.864207

Google Scholar

[6] S. Y. Xu, T. W. Chem, H∞ output feedback control for uncertain stochastic systems with time-varying delays, Automatica, vol. 40, no. 12, pp.2091-2098, (2004).

DOI: 10.1016/s0005-1098(04)00197-9

Google Scholar

[7] D. K. Kim and P. G. Park, Output-feedback H∞ control of systems over communication networks using a deterministic switching system approach, Automatica, vol. 40, no. 7, pp.1205-1212, (2004).

DOI: 10.1016/j.automatica.2004.01.024

Google Scholar

[8] D. Yue and Q. L. Han, Network-based robust H∞ control of systems with uncertainty, Automatica, vol. 41, no. 6, pp.999-1007, (2005).

Google Scholar

[9] I. Jarvis-Wloszek, D. Philbrick, M. A. Kaya, A. packard and G. Balas, H∞ control with disturbance preview and online optimization, IEEE Trans. Automat. Control, vol. 49, no. 2, pp.266-270, (2004).

DOI: 10.1109/tac.2003.822876

Google Scholar

[10] G. Tadmor and L. Mirkin, H∞ control and estimation with preview part two : Fixed-size ARE solutions in discrete time, IEEE Trans. Automat. Control, vol. 50, no. 1, pp.29-40, (2005).

DOI: 10.1109/tac.2004.840465

Google Scholar

[11] S. Yksel and T. Basar, Communication constraints for decentralized stabilizability with time-invariant policies, IEEE Trans. Automat. Control, vol. 52, no. 6, pp.1060-1066, (2007).

DOI: 10.1109/tac.2007.899085

Google Scholar

[12] G. N. Nair and R. J. Evans, Exponential stabilization of multidimensional linear systems, Automatica, pp.585-593, (2003).

Google Scholar

[13] H. Gao and T. Chen, H∞ estimation for uncertain systems with limited communication capacity, IEEE Trans. Automat. Control, vol. 52, no. 11, pp.2071-2084, Nov. (2007).

DOI: 10.1109/tac.2007.908316

Google Scholar

[14] Y. L. Wang and G. H. Yang, H∞ control of networked control systems with time delay and packet disordering, IET Control Theory & Applications, vol. 1, no. 5, pp.1344-1354, May. (2007).

DOI: 10.1049/iet-cta:20060489

Google Scholar

[15] Y. L. Wang and G. H. Yang, Multiple communication channels-based packet dropout compensation for networked control system, IET Control Theory & Applications, vol. 2, no. 8, 717-727, (2008).

DOI: 10.1049/iet-cta:20070352

Google Scholar

[16] J. Baillieul, Feedback designs in information based control, In the Proceedings of a Workshop Held in Lawrence, Kansas, B. Pasik-Duncan, Ed. New York: Springer-Verlag, pp.35-57, (2001).

Google Scholar

[17] M. Fu and L. Xie, The sector bound approach to quantized feedback control, IEEE Trans. Autom. Contr., vol. 50, no. 11, pp.1698-1711, (2005).

DOI: 10.1109/tac.2005.858689

Google Scholar

[18] N. C. Martins, M. A. Dahleh, Fundamental limitations of disturbance attenuation in the presence of side information, IEEE Trans. Autom. Contr., vol. 52, no. 1, pp.56-66, (2007).

DOI: 10.1109/tac.2006.887898

Google Scholar