[1]
S. Y. Xu and J. Law, Improved velay-dependent stability criteria for time-delay systems, IEEE trans. Automat. Control, vol. 50, no. 3, pp.384-387, (2005).
DOI: 10.1109/tac.2005.843873
Google Scholar
[2]
J. Xiong and J. Lam, Stablilization of linear systems over networks with bounded pocket loss, Automatic, vol. 43, pp.80-87, (2007).
Google Scholar
[3]
E. Fridman and U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Automat. Control, vol. 47, no. 11, pp.1931-1937, (2002).
DOI: 10.1109/tac.2002.804462
Google Scholar
[4]
M. Ya, L. Chu and T. G. Wang, Stabilization of networked control systems with data packet dropout and transmission delays continuous-time case, European Journal of Control, vol. 11, no. 1, pp.42-55, (2005).
DOI: 10.3166/ejc.11.40-49
Google Scholar
[5]
F. W. Yang, Z. D. Wang, Y. S. Hary and M. Gani, H∞ control for networked systems with randow communication delays, IEEE Trans. Automat. Control, vol. 51, no. 23, pp.511-518, (2006).
DOI: 10.1109/tac.2005.864207
Google Scholar
[6]
S. Y. Xu, T. W. Chem, H∞ output feedback control for uncertain stochastic systems with time-varying delays, Automatica, vol. 40, no. 12, pp.2091-2098, (2004).
DOI: 10.1016/s0005-1098(04)00197-9
Google Scholar
[7]
D. K. Kim and P. G. Park, Output-feedback H∞ control of systems over communication networks using a deterministic switching system approach, Automatica, vol. 40, no. 7, pp.1205-1212, (2004).
DOI: 10.1016/j.automatica.2004.01.024
Google Scholar
[8]
D. Yue and Q. L. Han, Network-based robust H∞ control of systems with uncertainty, Automatica, vol. 41, no. 6, pp.999-1007, (2005).
Google Scholar
[9]
I. Jarvis-Wloszek, D. Philbrick, M. A. Kaya, A. packard and G. Balas, H∞ control with disturbance preview and online optimization, IEEE Trans. Automat. Control, vol. 49, no. 2, pp.266-270, (2004).
DOI: 10.1109/tac.2003.822876
Google Scholar
[10]
G. Tadmor and L. Mirkin, H∞ control and estimation with preview part two : Fixed-size ARE solutions in discrete time, IEEE Trans. Automat. Control, vol. 50, no. 1, pp.29-40, (2005).
DOI: 10.1109/tac.2004.840465
Google Scholar
[11]
S. Yksel and T. Basar, Communication constraints for decentralized stabilizability with time-invariant policies, IEEE Trans. Automat. Control, vol. 52, no. 6, pp.1060-1066, (2007).
DOI: 10.1109/tac.2007.899085
Google Scholar
[12]
G. N. Nair and R. J. Evans, Exponential stabilization of multidimensional linear systems, Automatica, pp.585-593, (2003).
Google Scholar
[13]
H. Gao and T. Chen, H∞ estimation for uncertain systems with limited communication capacity, IEEE Trans. Automat. Control, vol. 52, no. 11, pp.2071-2084, Nov. (2007).
DOI: 10.1109/tac.2007.908316
Google Scholar
[14]
Y. L. Wang and G. H. Yang, H∞ control of networked control systems with time delay and packet disordering, IET Control Theory & Applications, vol. 1, no. 5, pp.1344-1354, May. (2007).
DOI: 10.1049/iet-cta:20060489
Google Scholar
[15]
Y. L. Wang and G. H. Yang, Multiple communication channels-based packet dropout compensation for networked control system, IET Control Theory & Applications, vol. 2, no. 8, 717-727, (2008).
DOI: 10.1049/iet-cta:20070352
Google Scholar
[16]
J. Baillieul, Feedback designs in information based control, In the Proceedings of a Workshop Held in Lawrence, Kansas, B. Pasik-Duncan, Ed. New York: Springer-Verlag, pp.35-57, (2001).
Google Scholar
[17]
M. Fu and L. Xie, The sector bound approach to quantized feedback control, IEEE Trans. Autom. Contr., vol. 50, no. 11, pp.1698-1711, (2005).
DOI: 10.1109/tac.2005.858689
Google Scholar
[18]
N. C. Martins, M. A. Dahleh, Fundamental limitations of disturbance attenuation in the presence of side information, IEEE Trans. Autom. Contr., vol. 52, no. 1, pp.56-66, (2007).
DOI: 10.1109/tac.2006.887898
Google Scholar