A Nano-SiO2 Form-Stable Phase Change Material for Building Thermal Energy Conservation

Article Preview

Abstract:

A stable form-phase change materials (PCM), based on capric-lauric acid eutectic served as the absorption material and the support of nano-silica material to prepare by sol-gel method. The best ratio capric-lauric acid eutectic combination is determined for 60 wt. %. Capillarity because of the influence of the hydrogen bonding, fatty acid and eutectic can be fixed in the three dimensional network structure of the construction of the silicon atom bonds and O still so solid sample melting point composite heating more fatty acid eutectic. Form and chemical properties of the composite phase change the transmission electron microscope, semi and Fourier transform infrared method.- Differential scanning calorimetric hot method is used for measuring phase transition temperature and phase change of latent heat composite, value 19.57 and 71.28 J/g , respectively. At the same time, service performance and other composite material thermal stability and thermal conductivity coefficient test using thermo gravimetric analysis and transient hotline method, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-86

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Zalba, J. M. Marin, L. F. Cabeza, et al, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, vol. 23, pp.251-283, (2003).

DOI: 10.1016/s1359-4311(02)00192-8

Google Scholar

[2] M. M. Farid, A. M. Khudhair, S. A. K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications, Energy conversion and Management, vol. 45, pp.1597-1615, (2004).

DOI: 10.1016/j.enconman.2003.09.015

Google Scholar

[3] W. L. Wang, X. X. Yang, Y. T. Fang, J. Ding, Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials, , Appl Energy, vol. 86, pp.170-174. (2009).

DOI: 10.1016/j.apenergy.2007.12.003

Google Scholar

[4] S. K. Sharma, C. K. Jotshi, S. Kumar, Thermal stability of sodium salt hydrates for solar energy storage applications, Sol Energy, vol. 45, pp.177-181, (1990).

DOI: 10.1016/0038-092x(90)90051-d

Google Scholar

[5] K. Kaygusuz, A. Sari, Thermal energy storage system using a technical grade paraffin wax as latent heat energy storage material, Energy Sources, vol. 27, pp.1535-1546, (2005).

DOI: 10.1080/009083190914015

Google Scholar

[6] A. Sari, K. Kaygusuz, Thermal energy storage system using some fatty acids as latent heat storage materials, Energ Sources, vol. 23, pp.863-876, (2001).

DOI: 10.1080/00908310151134004

Google Scholar

[7] Y. P. Zhang, Y. H. Su, X. S. Ge, Prediction of the melting temperature and the fusion heat of (Quasi-) Eutectic PCM, J China Univ Sci Tech, vol. 25, pp.474-478, (1995).

Google Scholar

[8] F. Frusteri, V. Leonardi, S. Vasta, G. Restuccia. Thermal conductivity measurement of a PCM based storage system containing carbon fibers, Applied Thermal Engineering, vol. 25, pp.1623-1633, (2005).

DOI: 10.1016/j.applthermaleng.2004.10.007

Google Scholar