A New Nondestructive Test Equipment Based on Image Processing and Magnetic Flux Analysis

Article Preview

Abstract:

Nondestructive testing (NDT) methods has been increased within recent years depending on the needs of industry, parallel to new technological developments. Many studies have focused on thermal imagining, magnetic flux analysis or both, which are used in order to detect the deformation on surface and under the surface. In this study a new technique is suggested to eliminate the perturbations which are distorting effects of one point cameras in terms of perspective. A new integration is also proposed in this research such as using image recognition with magnetic flux analysis. Taking advantage of this integration and the new approach to image processing, both the surface and the inside of a mechanical product can be tested properly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.P. Huang. A Back Propagation Based Real-Time License Plate Recognition System. International Journal of Pattern Recognition and Artificial Intelligence Vol. 22, No. 2 233–251, (2008).

DOI: 10.1142/s021800140800620x

Google Scholar

[2] O. Mendoza, P. Melin, G. Licea. A Hybrid Approach for Image Recognition Combining Type-2 Fuzzy Logic, Modular Neural Networks and the Sugeno Integral. Information Sciences 179 2078–2101, (2009).

DOI: 10.1016/j.ins.2008.11.018

Google Scholar

[3] G. Li, L. Min, H. Zang. Color Edge Detections Based on Cellular Neural Network. International Journal of Bifurcation and Chaos, Vol. 18, No. 4 1231–1242, (2008).

DOI: 10.1142/s0218127408020963

Google Scholar

[4] J. Wu, Y. (J. ) Tsai. Enhanced Roadway Inventory Using a 2-D Sign Video Image Recognition Algorithm. Computer-Aided Civil and Infrastructure Engineering 21 369–382, (2006).

DOI: 10.1111/j.1467-8667.2006.00443.x

Google Scholar

[5] K.A. Hwang, C.H. Yang. Learner Attending Auto-Monitor in Distance Learning Using Image Recognition and Bayesian Networks. Expert Systems with Applications 36, 11461–11469, (2009).

DOI: 10.1016/j.eswa.2009.03.047

Google Scholar

[6] Y. Tao, Z. Chen, C.L. Griffis. Chick Feather Pattern Recognition. IEE Proc. -Vis. Image Signal Process., Vol. 151, No. 5, October (2004).

DOI: 10.1049/ip-vis:20040730

Google Scholar

[7] Berman M., Bason M. L., Ellison F., Peden G. , Wrigley C. W. American Association of Cereal Chemists, Vol. 73, No. 3, pp.323-327 , (1996).

Google Scholar

[8] Yu T. -Y., Buyukozturk O., A Far-feild Airborne Radar NDT Technique for Detecting Debonding in GFRP-retrofitted Concrete Structures, NDT&E International, Vol. 41, pp.10-24, (2008).

DOI: 10.1016/j.ndteint.2007.07.002

Google Scholar

[9] Stefani S. A., Nagarajah C. R., Willgoss R., A surface inspection technique for continuously extruded cylindrical products, Meas. Sci. Technol. Vol. 10, Num. 2, (1999).

DOI: 10.1088/0957-0233/10/2/014

Google Scholar

[10] F. Pernkopf, P. O'Leary, Image acquisition techniques for automatic visual inspection of metallic surfaces, NDT & E International, Vol. 36, Issue. 8, Pages 609-617, December, (2003).

DOI: 10.1016/s0963-8695(03)00081-1

Google Scholar

[11] F. Pernkopf, P. O'Leary, Visual inspection of machined metallic high-precision surfaces, EURASIP Journal on Applied Signal Processing, Vol. 2002 Issue. 7, pp.667-678, January, (2002).

DOI: 10.1155/s1110865702203145

Google Scholar

[12] T. J. Kang, C. H. Kim, K. W. Oh, Automatic Recognition of Fabric Weave Patterns by Digital Image Analysis, Textile Research Journal, vol. 69 no. 2 pp.77-83, (1999).

DOI: 10.1177/004051759906900201

Google Scholar

[13] P. -L. Yeh, P. -L. Liu, Imaging of internal cracks in concrete structures using the surface rendering technique, NDT & E International, 2nd International Conference on Advanced Nondestructive Evaluation, Vol. 42, Issue. 3, Pages. 181-187, ISSN 0963-8695, April (2009).

DOI: 10.1016/j.ndteint.2008.09.003

Google Scholar

[14] Weinstock H., A review of SQUID magnetometry applied to nondestructive evaluation, Magnetics, IEEE Transactions, Issue. 2, Pages. 3231 – 3236, ISSN. 0018-9464 March (1991).

DOI: 10.1109/20.133898

Google Scholar

[15] Lord, W., Applications of numerical field modeling to electromagnetic methods of nondestructive testing, Magnetics, IEEE Transactions, Vol. 19, Issue. 6, Pages. 2437 – 2442, ISSN: 0018-9464, (1983).

DOI: 10.1109/tmag.1983.1062882

Google Scholar

[16] E. Solisa, C. R. Peres, J. E. Jiméneza, J. R. Aliquea and J. C. Monjeb, A new analytical–experimental method for the identification of stability lobes in high-speed milling, International Journal of Machine Tools and Manufacture, Vol. 44, Issue. 15, pp.1591-1597, December (2004).

DOI: 10.1016/j.ijmachtools.2004.06.011

Google Scholar

[17] M. R. Clark, D. M. McCann, M. C. Forde, Application of infrared thermography to the non-destructive testing of concrete and masonry bridges, NDT & E International, Vol. 36, Issue. 4, Pages 265-275, June, (2003).

DOI: 10.1016/s0963-8695(02)00060-9

Google Scholar

[18] M. Merola, P. Chappuis, F. Escourbiac, M. Grattarola, H. Jeskanen, P. Kauppinen, L. Plochl, B. Schedler, J. Schlosser, I. Smid, S. Tahtinen, R. Vesprini, E. Visca, A. Zabernig, Non-destructive testing of divertor components, Fusion Engineering and Design, Volumes 61-62, Pages 141-146, ISSN 0920-3796, (2002).

DOI: 10.1016/s0920-3796(02)00155-2

Google Scholar