A Spectral Element Method for the Numerical Simulation of Axisymmetric Flow in Czochralski Crystal Growth

Article Preview

Abstract:

In this paper, a spectral element method (SEM) is applied to simulate the axisymmetric flow in Czochralski crystal growth. The coordinate singularity for 1/r at r=0 is avoided by using the Gauss-Radau type quadrature points for the spatial discretization. The SEM solver is validated by its application to the benchmark problems suggested by Wheeler [1]. The stream function is solved by an artificial Poisson equation with the present method. The results show that it agrees well with available data in the literatures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 452-453)

Pages:

1195-1199

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Wheeler, J. Cryst. Growth Vol. 102 (1990), p.691.

Google Scholar

[2] U. Bückle, M. Schäfer, J. Cryst. Growth Vol. 126 (1993), p.682.

Google Scholar

[3] Raspo, J. Ouazzani, R. Peyret, Int. J. Numer. Meth. Heat Fluid Flow, Vol. 6 (1996), p.31.

Google Scholar

[4] D. Xu, C. Shu, B.C. Khoo, J. Cryst. Growth Vol. 173 (1997), p.123.

Google Scholar

[5] C. Shu, Y.T. Chew, Y. Liu, J. Cryst. Growth Vol. 181 (1997), p.427.

Google Scholar

[6] Y. Peng, C. Shu, Y.T. Chew, J. Qiu, J. Comput. Phys. Vol. 186 (2003), p.295.

Google Scholar

[7] A.T. Patera, J. Comput. Phys. Vol. 54 (1984), p.468.

Google Scholar

[8] J. Xu, P.N. Ostroumov, J. Nolen, Comput. Phys. Commun. Vol. 178 (2008), p.290.

Google Scholar

[9] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, (1988).

DOI: 10.1007/978-3-642-84108-8

Google Scholar

[10] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for CFD, Oxford University Press, London, (1999).

Google Scholar

[11] G.E. Karniadakis, M. Israeli, S.A. Orszag, J. Comput. Phys. Vol. 97 (1991), p.414.

Google Scholar