[1]
S. Dubowsky. A parameter identification study of kinematic errors in planar mechanism. Journal of Engineering for industry, 1975 97(B): 635-642.
DOI: 10.1115/1.3438628
Google Scholar
[2]
Ting, K L, Long, Y F., 1996, Performance quality and tolerance sensitivity of mechanisms, ASME, J. Mec. Design, 118(1), pp.3-9.
Google Scholar
[3]
Imani, B. M., Pour, M., 2009, Tolerance analysis of flexible kinematic mechanism using DLM method, Mech. Mach. Theory, 44(2), pp.445-456.
DOI: 10.1016/j.mechmachtheory.2008.03.010
Google Scholar
[4]
V. I. Sergeyev. Methods for mechanism reliability calculation. Mechanism and Machine Theory, 1974, 9(1): 97-106.
DOI: 10.1016/0094-114x(74)90010-x
Google Scholar
[5]
Y. S. Feng. A study of the mechanism reliability theory. China Mechanical Engineering, 1992, 3(3): 1-3. (in Chinese).
Google Scholar
[6]
Liu T S, Wang J D. A reliability approach to evaluating robot accuracy performance. Mech. Mach. Theory, 1994, 29(2): 83-94.
Google Scholar
[7]
Rao S S, Bhatti P K. Probabilistic approach to manipulator kinematic and dynamics. Reliab. Eng. Syst. Safe., 2001, 72(1): 47-58.
Google Scholar
[8]
Choi D H, Yoo H H. Reliability analysis of a robot manipulator operation employing single Monte-Carlo simulation. Key. Eng . Mater., 2006, 321-323(Pt2): 1568-1571.
DOI: 10.4028/www.scientific.net/kem.321-323.1568
Google Scholar
[9]
William J. Vetter. Matrix calculus operations and Taylor expansions. SIAM Review, 1973, 15(2): 352-369.
DOI: 10.1137/1015034
Google Scholar
[10]
Hunter, D. An upper bound for the probability of a union. J. Appl. Probab., 1976 , 13, 597-603.
DOI: 10.1017/s0021900200104164
Google Scholar
[11]
Junho Song, Armen Der Kiureghian. Bounds on system reliability by linear programming. Journal of Engineering Mechanics, 2003, 129(6): 627-636.
DOI: 10.1061/(asce)0733-9399(2003)129:6(627)
Google Scholar
[12]
Hailperin, T. Best possible inequalities for the probability of a logical function of events. Am. Math. Monthly, 1965, 72(4): 343-359.
DOI: 10.1080/00029890.1965.11970533
Google Scholar