[1]
M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy. A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production. Renew. Sustainable Energy Rev. vol. 11, no. 3, p.401~425, (2007).
DOI: 10.1016/j.rser.2005.01.009
Google Scholar
[2]
G. K. Mor, O. K. Varghese, and M. Paulose, A review on highly ordered, vertically vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells. vol. 90, no. 14, p.2011~2075, (2006).
DOI: 10.1016/j.solmat.2006.04.007
Google Scholar
[3]
J. R. Durrant, S. A. Haque, and E. Palomares, Towards optimisation of eletron transfer processes in dye sensitised solar cells. Coord. Chem. Rev. vol. 248, no. 13, p.1247~1257, (2004).
DOI: 10.1016/j.ccr.2004.03.014
Google Scholar
[4]
A. Fujishima, T. N. Rao, and D. A. Tryk. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. vol. 1, no. 1, p.1~21, (2000).
Google Scholar
[5]
R. N. Pandey, K. S. Chandra, and O. N. Srivastava. High conversion efficiency photoelectrochemical solar cells. Prog. Surf. Sci. vol. 52, no. 3, p.125~192, (1996).
Google Scholar
[6]
K. Zakrzewska. Gas sensing mechanism of TiO2-based thin films. Vacuum. vol. 74, p.335~338, (2004).
DOI: 10.1016/j.vacuum.2003.12.152
Google Scholar
[7]
A. Fujishima, K. Honda. Electrochemical photocatalysis of water at a semi- conductor electrode. Nature. vol. 238, p.37~38, (1972).
Google Scholar
[8]
M. A. Fox, M. T. Dulay, Heterogeneous photocatlysis. Chem. Rev. vol. 93, no. 1, p.341~357, (1993).
Google Scholar
[9]
M. Inagaki, Y. Nakazawa, and M. Hirano, Preparation of stable anatase-type TiO2 and its photocatalytic performance. Int. J. Inorg. Mater. vol. 3, no. 7, p.809~811, (2001).
DOI: 10.1016/s1466-6049(01)00176-3
Google Scholar
[10]
D. Luca, D. Mardare, F. Iacomi, and C. M. Teodorescu. Increasing surface hydrophilicity of titania thin films by doping. Applied Surface Science. vol. 252, no. 18, p.6122~6126, (2006).
DOI: 10.1016/j.apsusc.2006.05.011
Google Scholar
[11]
L. L. Ren, Y. P. Zeng, D. L. Jiang. Preparation, characterization and photocatalytic activities of Ag-deposited porous TiO2 sheets. Catal. Commun. vol. 10, no. 5, p.645~649, (2009).
DOI: 10.1016/j.catcom.2008.11.016
Google Scholar
[12]
M. D. Wiggins, M. C. Neison, C. R. Aita. Phase development in sputter deposited titanium dioxide. J. Vac. Sci. Technol. A. vol. 14, no. 3, p.772~776, (1996).
Google Scholar
[13]
Y. Liu, X. L. Wang, F. Yang, X. R. Yang. Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/ TiO2 composite films. Micropor. Mesopor. Mater. vol. 114, no. 3, p.431~439, (2008).
DOI: 10.1016/j.micromeso.2008.01.032
Google Scholar
[14]
C. D. Wagner, W. M. Riggs, L. E. Daris, Handbook of X-ray photoelectron spectroscopy. New York, USA: Perkin-Elmer Corporation Physical Electronics Division, (1979).
Google Scholar
[15]
A. Mattsson, M. Leideborg, K. Larsson, Adsorption and Solar Light Decomposition of Acetone on Anatase TiO2 and Niobium Doped TiO2 Thin Films. J. Phys. Chem. B. vol. 110, no. 3, p.1210~1220, (2006).
DOI: 10.1021/jp055656z
Google Scholar
[16]
M. D. Koninck, P. Manseau, B. Marsan. Preparation and characterization of Nb-doped TiO2 nanopaticles used as a conductive support for bifunctional CuCo2O4 electrocatalyst. Journal of Electroanalytical Chemistry. vol. 611, no. 1, p.67~79, (2007).
DOI: 10.1016/j.jelechem.2007.08.004
Google Scholar
[17]
M. Gratzel. Heterogeneous photochemical electron transfer, CRC Press, Baton Rouge, FL, (1998).
Google Scholar
[18]
A. L. Linsebigler, G. Q. Lu, J. T. Yates. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, vol. 95, no. 3, p.735~758, (1995).
DOI: 10.1021/cr00035a013
Google Scholar
[19]
W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. vol. 98, no. 51, p.13669~13679, (1994).
DOI: 10.1021/j100102a038
Google Scholar