Determination of Hydrogen Peroxide Residue in Food Using CdS Quantum Dots as Fluorescence Probes

Article Preview

Abstract:

A simple and accurate method for determination of hydrogen peroxide (H2O2) using carboxymethyl cellulose coated CdS quantum dots (QDs) as a fluorescence probe was established. The influence factors of the fluorescence quenching system and the optimum conditions were investigated for analysis of hydrogen peroxide. It was found that the maximum relative fluorescence quenching intensity produced at pH 8.5 in 0.035 mol/L KH2PO4-Na2HPO4, when the concentration of CdS QDs was 1.9×10-3 mol/L and the reacting time and temperature were 45 minutes and 30°C, respectively. Under the optimum conditions, the relative fluorescence quenching intensity has a linear relationship with the logarithmic concentration of H2O2 in the range from 3×10-5 to 5×10-2 mol/L. The limit of the detection is 2.3×10-6 mol/L for H2O2. The method was used to determinate the amount of remained H2O2 in milk and Calcium Tablets successfully.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

1189-1194

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. S. Wolfbeis, A. Durkop, M. Wu and Z. H. Lin, A europium-ion based luminescent sensing probe for hydrogen peroxide, Angew. Chem. Int. Ed, vol. 41, no. 23, p.4495–4498, (2002).

DOI: 10.1002/1521-3773(20021202)41:23<4495::aid-anie4495>3.0.co;2-i

Google Scholar

[2] K. A. Fahnrich, M. Prawda and G. G. Guilbault, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta, vol. 54, no. 4, pp.531-559, (2001).

DOI: 10.1016/s0039-9140(01)00312-5

Google Scholar

[3] M. BruchezJr, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science, vol. 281, no. 5385, pp.2013-2016, (1998).

DOI: 10.1126/science.281.5385.2013

Google Scholar

[4] R. Yang and S. P. Liu, Development of some molecular spectral analytical methods for the determination of proteins, Chin. J. Anal. Chem., vol. 29, no. 2, pp.232-24129, (2001).

Google Scholar

[5] H. Mattoussi, J. M. Manro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikula, et al,. Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc., vol. 122, no. 49, pp.12142-12150 , (2000).

DOI: 10.1021/ja002535y

Google Scholar

[6] C. W. Chan, S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, vol. 281, pp.2016-2018, (1998).

DOI: 10.1126/science.281.5385.2016

Google Scholar

[7] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, et al., Quantum dots for live cells, in vivo imaging, and diagnostics, Sicence, vol. 307, no. 5709, pp.538-544, (2005).

DOI: 10.1126/science.1104274

Google Scholar

[8] R. E. Bailey, A. M. Smith and S. Nie, Quantum dots in biology and medicine,  Physica E, vol. 25, no. 1, pp.1-12, (2004).

Google Scholar

[9] X. Hu, H. Han, L. Hua, Z. Sheng, Electrogenerated chemilumine- scence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide, Biosens. Bioelectron., vol. 25, no. 7, pp.1843-1846, (2010).

DOI: 10.1016/j.bios.2009.12.021

Google Scholar

[10] H. Han, Z. Sheng and J. Liang, Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution,. Anal. Chim. Acta, vol. 596, no. 1, pp.73-78, (2007).

DOI: 10.1016/j.aca.2007.05.039

Google Scholar

[11] Z. Wang, Q. Xu, H.Q. Wang, Q. Yang, J. H. Yu, Y.D. Zhao, Hydrogen peroxide biosensor based on direct electron transfer of horseradish peroxidase with vapor deposited quantum dots,. Sens. Actuat. B, vol. 138, no. 1, pp.278-282, (2009).

DOI: 10.1016/j.snb.2008.12.040

Google Scholar

[12] C. G. Shi, J. J. Xu and H. Y. Chen, Electrogenerated chemilumine- scence and electrochemical bi-functional sensors for H2O2 based on CdS nanocrystals/ hemoglobin multilayers, J. Electroanal. Chem., vol. 610, p.186–192, (2007).

DOI: 10.1016/j.jelechem.2007.07.018

Google Scholar

[13] C. R. Tang, Z. H. Su, B. G. Lin, H.W. Huang, Y.L. Zeng, S. Li, H. Huang, Y. J. Wang, et al., A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes,. Anal. Chim. Acta, vol. 678, pp.203-207, (2010).

DOI: 10.1016/j.aca.2010.08.034

Google Scholar

[14] D. Pan, Q. Wang, S Jiang, X. Ji and L. An, Controllable synthesis of highly luminescent and monodisperse CdS nanocrystals by a two-phase approach under mild conditions, Advan. Mater., vol. 16, no. 12, pp.982-985, (2004).

DOI: 10.1002/adma.200400010

Google Scholar

[15] B. R. Sankapal, R. S. Mane, C. D. Lokhande, Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method, Mater. Res. Bull., vol. 35, no. 2, pp.177-184, (2000).

DOI: 10.1016/s0025-5408(00)00210-5

Google Scholar