[1]
C. Vidaud, A. Gourion-Arsiquaud, F. Rollin-Genetet, C. Torne-Celer, S. Plantevin, O. Pible, C. Berthomieu and E. Quéméneur. Structural consequences of binding UO22+ to apotransferrin: can this protein account for entry of uranium into human cells, Biochemistry, 2007, 46: 2215-2226.
DOI: 10.1021/bi061945h
Google Scholar
[2]
G. Montavon, C. Apostolidis, F. Bruchertseifer, U. Repinc and A. Morgenstern. Spectroscopic study of the interaction of U (VI) with transferrin and albumin for speciation of U(VI) under blood serum conditions, J. Inorg. Biochem. 2009, 103: 1609-1616.
DOI: 10.1016/j.jinorgbio.2009.08.010
Google Scholar
[3]
J. Michon, S. Frelon, C. Garnier and F. Coppin. Determinations of uranium (VI) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching, J. Fluresc. 2010, 20: 581-590.
DOI: 10.1007/s10895-009-0587-3
Google Scholar
[4]
Pible, P. Guilbaud, J.L. Pellequer, C. Vidaud amd E. Quéméneur. Structural insights into protein-uranyl interaction: towards and in silico detection method, Biochimie, 2006, 88: 1631-1638.
DOI: 10.1016/j.biochi.2006.05.015
Google Scholar
[5]
J.D. Van Horn and H. Huang. Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data, Coord. Chem. Rev. 2006, 250: 765-775.
DOI: 10.1016/j.ccr.2005.09.010
Google Scholar
[6]
R.D. Lins, E.R. Vorpagel, M. Guglielmi and T.P. Straatsma. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa, Biomacromolecules, 2008, 9: 29-35.
DOI: 10.1021/bm700609r
Google Scholar
[7]
J. B. Schenkman and I. Jansson, The many roles of cytchrome b5,. Pharmacol. Therapeut. 2003, 97: 139-152.
Google Scholar
[8]
F.S. Mathews. The structure, function and evolution of cytochromes, Prog. Biophys. Mol. Biol. 1985, 45: 1-56.
Google Scholar
[9]
W. -H. Wang, Y. -H. Wang, J. -X. Lu, Y. Xie and Z. -X. Huang. Engineering a hydrophilic heme catalytic pocket into microsomal cytochrome b5: construction of novel mettalloproteins with high peroxidase-like activity, Chem. Lett. 2002, 674-675.
DOI: 10.1246/cl.2002.674
Google Scholar
[10]
W. -H. Wang, J. -X. Lu, P. Yao, Y. Xie and Z. -X. Huang. The distinct heme coordination and stabilities of His39Ser and His39Cys mutants of cytochrome b5, Protein. Eng. 2003, 16: 1047-1054.
DOI: 10.1093/protein/gzg134
Google Scholar
[11]
D.A. Baldwin, H.M. Marques and J.M. Pratt. Hemes and hemoproteins. 5: kinetics of the peroxidatic activity of microperoxidase-8: model for the peroxidase enzymes, J. Inorg. Biochem. 1987, 30: 203-217.
DOI: 10.1016/0162-0134(87)80064-8
Google Scholar
[12]
R.C. Durley and F.S. Mathews. Refinement and structural analysis of bovine cytochrome b5 at 1. 5 angstrom resolution, Acta. Crystallogr. D. 1996, 52: 65-76.
DOI: 10.1107/s0907444995007827
Google Scholar
[13]
Z. -H. Wang, Y. -W. Lin, F.I. Rosell, F. -Y. Ni, H. -J. Lu, P. -Y. Yang, X. -S. Tan, X. -Y. Li, Z. -X. Huang and A.G. Mauk. Converting cytochrome c into a peroxidase-like metalloenzyme by molecular design, ChemBioChem, 2007, 8: 607-609.
DOI: 10.1002/cbic.200600547
Google Scholar
[14]
L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan and K. Schulten. NAMD2: greater scalability for parallel molecular dynamics, J. Comp. Phys. 1999, 151: 283-312.
DOI: 10.1006/jcph.1999.6201
Google Scholar
[15]
N. Yeung, Y. -W. Lin, Y. -G. Gao, X. Zhao, B.S. Russell, L. Lei, K.D. Miner, H. Robinson and Y. Lu. Rational design of a structural and functional nitric oxide reductase, Nature, 2009, 462: 1079-1082.
DOI: 10.1038/nature08620
Google Scholar
[16]
W. Humphrey, A. Dalke and K. Schulten. VMD: Visual Molecular Dynamics, J. Mol. Graph. 1996, 14: 33-38.
DOI: 10.1016/0263-7855(96)00018-5
Google Scholar
[17]
S. Manyusa, G. Mortuza, and D. Whitford. Analysis of folding and unfolding reactions of cytochrome b5, Biochemistry, 1999, 38: 14352-14362.
DOI: 10.1021/bi991413j
Google Scholar
[18]
Y. -W. Lin, N. Yeung, Y. -G. Gao, K.D. Miner, S. Tian, H. Robinson and Y. Lu. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin, Proc. Natl. Acad. Sci. USA 2010, 107: 8581-8586.
DOI: 10.1073/pnas.1000526107
Google Scholar
[19]
Y. -W. Lin, N. Yeung, Y. -G. Gao, K.D. Miner, L. Lei, H. Robinson and Y. Lu. Introducing a non-heme iron center into myoglobin confers nitric oxide reductase activity, J. Am. Chem. Soc. 2010, 132: 9970-9972.
DOI: 10.1021/ja103516n
Google Scholar
[20]
Y. Ren, W. -H. Wang, M. Case, W. Qian, G. McLendon and Z. -X. Huang. Mapping the electron transfer interface between cytochrome b5 and cytochrome c, Biochemistry, 2004, 43: 3527-3536.
DOI: 10.1021/bi036078k
Google Scholar
[21]
S.C. Im and L. Waskell. The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b5,. Arch. Biochem. Biophys. 2010, doi: 10. 1016/j. abb. 2010. 10. 023.
DOI: 10.1016/j.abb.2010.10.023
Google Scholar