[1]
J.C. Ravey, G. Ducouret, and D. Espinant, Asphaltene macrostructure by small angle neutron scattering., Fuel , vol. 67, pp.1560-1567, (1988).
DOI: 10.1016/0016-2361(88)90076-2
Google Scholar
[2]
D.A. Storm, E.Y. Shue, M.M. DeTar, and R.J. Barresi, A comparison of the macrostructure of Ratawi asphaltenes in toluene and vacuum residue, Energy & Fuels, vol. 8, no. 3, pp.567-569, (1994).
DOI: 10.1021/ef00045a008
Google Scholar
[3]
B.A. Waston, and M.A. Barteau, Imaging of petroleum asphaltenes using scanning tunneling microscopy, Ind. Eng. Chem. Res., vol. 33, no. 10, pp.2358-2363, (1994).
DOI: 10.1021/ie00034a015
Google Scholar
[4]
R.M. Balabin, and R.Z. Syunyaev, Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study, J. Colloid and Interface Science, vol. 318, pp.167-174, (2008).
DOI: 10.1016/j.jcis.2007.10.045
Google Scholar
[5]
E.L. Nordgard, G. Sorland, and J. Sjoblom, Behavior of asphaltene model compounds at W/O interfaces , Langmuir, vol. 26, pp.2352-2360, (2010).
Google Scholar
[6]
S.E. Moschopedis, J.F. Fryer, and J.G. Speight, Investigation of asphaltene molecular weights, Fuel, vol. 55, pp.227-32, (1976).
DOI: 10.1016/0016-2361(76)90093-4
Google Scholar
[7]
R.Z. Syunyaev, and R.M. Balabin, Polarization of Fluorescence of asphaltene containing systems, J. Dispersion Science and Technology, vol. 29, pp.1505-1514, (2008).
DOI: 10.1080/01932690802316868
Google Scholar
[8]
F. Trejo, J. Ancheyta, T.J. Morgan, A.A. Herod, and R. Kandiyoti, Characterization of asphaltenes from hydrotreated products by SEC, LDMS, MALDI, NMR, and XRD , Energy & Fuels, vol. 21, pp.2121-2128, (2007).
DOI: 10.1021/ef060621z
Google Scholar
[9]
J.G. Speight, and S.E. Moschopedis, On the molecular nature of petroleum asphaltenes, Arab. J. Sci. Eng., vol. 19, pp.335-343, (1994).
Google Scholar
[10]
A. Marafi, A. Stanislaus, and E. Furimsky, Kinetics and modeling of petroleum residues hydroprocessing, Catalysis Review, vol. 52, pp.204-324, (2010).
DOI: 10.1080/01614941003720167
Google Scholar
[11]
C.H. Bartholomew, Catalyst Deactivation in Hydrotreating of Residua: A Review, in Catalytic Hydroprocessing of Petroleum and Distillates, M.C. Oballa and S.S. Shih, Eds. New York: Marcel Dekker; 1994, pp.1-32.
DOI: 10.1201/9781003067306-1
Google Scholar
[12]
J.M. Oelderik, S.T. Sie, and D. Bode, Progress in the catalysis of the upgrading of petroleum residue: A review of 25 years of R&D on Shell's residue hydroconversion technology, Appl. Catal., vol. 47, no. 1, pp.1-24, (1989).
DOI: 10.1016/s0166-9834(00)83258-3
Google Scholar
[13]
M.R. Gray, Y.X. Zhao, C.M. McKnight, D.A. Komar and J.D. Carruthers, Coking of hydroprocessing Catalyst by Residue Fractions of Bitumen, Energy and Fuels, vol. 13, pp.1037-1045, (1999).
DOI: 10.1021/ef9900076
Google Scholar
[14]
J.A. Gearhart, and L. Gatwin, ROSE process improve resid feed , Hydrocarbon Process, vol. 55 , no. 5, pp.125-128, (1976).
Google Scholar
[15]
Y.X. Zhao, and F. Wei, Simultaneous removal of asphaltenes and water from water-in-bitumen emulsionI. Fundamental development, Fuel Proc. Tech., vol. 89, pp.933-940, (2008).
DOI: 10.1016/j.fuproc.2008.03.008
Google Scholar
[16]
I.E. Wiehe, A phase-separation kinetic model for coke formation, Ind. Eng. Chem. Res., vol. 32, no. 11, pp.2447-2454, (1993).
DOI: 10.1021/ie00023a001
Google Scholar
[17]
M.T. Martinez, A.M. Benito, and M.A. Callejas, Thermal cracking of coal residues: kinetics of asphaltene decomposition, Fuel, vol. 76, no. 9, pp.871-877, (1997).
DOI: 10.1016/s0016-2361(97)00048-3
Google Scholar
[18]
Y.X. Zhao, and M.R. Gray, Molar kinetics and selectivity in cracking of Athabasca asphaltenes, Energy & Fuels, vol. 15, no. 3, 751-755, (2001).
DOI: 10.1021/ef000286t
Google Scholar
[19]
K. Usui, K. Kidena, S. Murata, M. Nomura , and W. Trisunaryanti, Catalytic hydrocracking of petroleum-derived asphaltenes by transition metal-loaded zeolite catalyst, Fuel, vol. 83, pp.1899-1906, (2004).
DOI: 10.1016/j.fuel.2003.08.023
Google Scholar
[20]
T. Takatsuka, R. Kajiyama, H. Hashimoto, I. Matsuo, and S. Miwa, A practical model of thermal cracking of residual, oil J Chem Eng Japan , vol. 22, pp.304-310, (1989).
DOI: 10.1252/jcej.22.304
Google Scholar