Molar Kinetics in Catalytic Hydrocracking of Asphaltenes

Article Preview

Abstract:

The hydrocracking of a pentane-insoluble asphaltene over NiMo/γ-Al2O3 was investigated in a microbatch reactor at 703 K. The cracking kinetics of the asphaltene was analyzed on a total molar basis. The first-order kinetics fits the experimental data in reaction times ≤30 min adequately, to give the rate constant of 0.0498 min-1. For reaction times over 30 min, however, secondary reactions such as coke formation could become significant. The formation probability of gas products decreases from the initial value of circa 0.8 to a stable level of 0.6 in 30 min, and the formation probability of liquid products increases from 0.2 to 0.4 accordingly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

533-539

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Ravey, G. Ducouret, and D. Espinant, Asphaltene macrostructure by small angle neutron scattering., Fuel , vol. 67, pp.1560-1567, (1988).

DOI: 10.1016/0016-2361(88)90076-2

Google Scholar

[2] D.A. Storm, E.Y. Shue, M.M. DeTar, and R.J. Barresi, A comparison of the macrostructure of Ratawi asphaltenes in toluene and vacuum residue, Energy & Fuels, vol. 8, no. 3, pp.567-569, (1994).

DOI: 10.1021/ef00045a008

Google Scholar

[3] B.A. Waston, and M.A. Barteau, Imaging of petroleum asphaltenes using scanning tunneling microscopy, Ind. Eng. Chem. Res., vol. 33, no. 10, pp.2358-2363, (1994).

DOI: 10.1021/ie00034a015

Google Scholar

[4] R.M. Balabin, and R.Z. Syunyaev, Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study, J. Colloid and Interface Science, vol. 318, pp.167-174, (2008).

DOI: 10.1016/j.jcis.2007.10.045

Google Scholar

[5] E.L. Nordgard, G. Sorland, and J. Sjoblom, Behavior of asphaltene model compounds at W/O interfaces , Langmuir, vol. 26, pp.2352-2360, (2010).

Google Scholar

[6] S.E. Moschopedis, J.F. Fryer, and J.G. Speight, Investigation of asphaltene molecular weights, Fuel, vol. 55, pp.227-32, (1976).

DOI: 10.1016/0016-2361(76)90093-4

Google Scholar

[7] R.Z. Syunyaev, and R.M. Balabin, Polarization of Fluorescence of asphaltene containing systems, J. Dispersion Science and Technology, vol. 29, pp.1505-1514, (2008).

DOI: 10.1080/01932690802316868

Google Scholar

[8] F. Trejo, J. Ancheyta, T.J. Morgan, A.A. Herod, and R. Kandiyoti, Characterization of asphaltenes from hydrotreated products by SEC, LDMS, MALDI, NMR, and XRD , Energy & Fuels, vol. 21, pp.2121-2128, (2007).

DOI: 10.1021/ef060621z

Google Scholar

[9] J.G. Speight, and S.E. Moschopedis, On the molecular nature of petroleum asphaltenes, Arab. J. Sci. Eng., vol. 19, pp.335-343, (1994).

Google Scholar

[10] A. Marafi, A. Stanislaus, and E. Furimsky, Kinetics and modeling of petroleum residues hydroprocessing, Catalysis Review, vol. 52, pp.204-324, (2010).

DOI: 10.1080/01614941003720167

Google Scholar

[11] C.H. Bartholomew, Catalyst Deactivation in Hydrotreating of Residua: A Review, in Catalytic Hydroprocessing of Petroleum and Distillates, M.C. Oballa and S.S. Shih, Eds. New York: Marcel Dekker; 1994, pp.1-32.

DOI: 10.1201/9781003067306-1

Google Scholar

[12] J.M. Oelderik, S.T. Sie, and D. Bode, Progress in the catalysis of the upgrading of petroleum residue: A review of 25 years of R&D on Shell's residue hydroconversion technology, Appl. Catal., vol. 47, no. 1, pp.1-24, (1989).

DOI: 10.1016/s0166-9834(00)83258-3

Google Scholar

[13] M.R. Gray, Y.X. Zhao, C.M. McKnight, D.A. Komar and J.D. Carruthers, Coking of hydroprocessing Catalyst by Residue Fractions of Bitumen, Energy and Fuels, vol. 13, pp.1037-1045, (1999).

DOI: 10.1021/ef9900076

Google Scholar

[14] J.A. Gearhart, and L. Gatwin, ROSE process improve resid feed , Hydrocarbon Process, vol. 55 , no. 5, pp.125-128, (1976).

Google Scholar

[15] Y.X. Zhao, and F. Wei, Simultaneous removal of asphaltenes and water from water-in-bitumen emulsionI. Fundamental development, Fuel Proc. Tech., vol. 89, pp.933-940, (2008).

DOI: 10.1016/j.fuproc.2008.03.008

Google Scholar

[16] I.E. Wiehe, A phase-separation kinetic model for coke formation, Ind. Eng. Chem. Res., vol. 32, no. 11, pp.2447-2454, (1993).

DOI: 10.1021/ie00023a001

Google Scholar

[17] M.T. Martinez, A.M. Benito, and M.A. Callejas, Thermal cracking of coal residues: kinetics of asphaltene decomposition, Fuel, vol. 76, no. 9, pp.871-877, (1997).

DOI: 10.1016/s0016-2361(97)00048-3

Google Scholar

[18] Y.X. Zhao, and M.R. Gray, Molar kinetics and selectivity in cracking of Athabasca asphaltenes, Energy & Fuels, vol. 15, no. 3, 751-755, (2001).

DOI: 10.1021/ef000286t

Google Scholar

[19] K. Usui, K. Kidena, S. Murata, M. Nomura , and W. Trisunaryanti, Catalytic hydrocracking of petroleum-derived asphaltenes by transition metal-loaded zeolite catalyst, Fuel, vol. 83, pp.1899-1906, (2004).

DOI: 10.1016/j.fuel.2003.08.023

Google Scholar

[20] T. Takatsuka, R. Kajiyama, H. Hashimoto, I. Matsuo, and S. Miwa, A practical model of thermal cracking of residual, oil J Chem Eng Japan , vol. 22, pp.304-310, (1989).

DOI: 10.1252/jcej.22.304

Google Scholar