Kinetics and Selectivity of Cyclohexane Pyrolysis

Article Preview

Abstract:

Pyrolysis of cyclohexane was conducted with a plug-flow tube reactor at 873 K. The data of feed conversion fit first-order kinetics adequately, giving the apparent rate constant of 0.0092 s-1 . A chain mechanism of free radical reactions is proposed to interpret consumption of cyclohexane by four processes: homolysis of C-C bond (Path I) and homolysis of C-H bond (Path II ) in reaction chain initiation, H-abstraction of various radicals from feed molecule in reaction chain propagation (Path III ), and the process associated with coke formation (Path IV). The reaction path probability ratio of X I:X II:X III :X IV was 0.5420: 0.0045 : 0.3897 : 0.0638.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

540-548

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.A. Willems, and G.F. Froment, Kinetic Modeling of the Thermal Cracking of Hydrocarbons, Ind. Eng. Chem. Res., vol. 27, no. 11, pp.1966-1971, (1988).

DOI: 10.1021/ie00083a002

Google Scholar

[2] P.E. Savage, Mechanisms and kinetics models for hydrocarbon pyrolysis, J. Anal. Appl. Pyrolysis, vol. 54, pp.109-126, (2000).

Google Scholar

[3] R.U. Khan, et al, Pyrolysis of propane under vacuum carburizing conditions, J. Anal. Appl. Pyrolysis, vol. 81, pp.148-156, (2008).

Google Scholar

[4] K. Norinaga, and O. Deutschmann, Detailed kinetic modeling of gas-phase reaction in the chemical vapor deposition of carbon from light hydrocarbons, Ind. Eng. Chem. Res., vol. 46, no. 11, pp.3547-3557, (2007).

DOI: 10.1021/ie061207p

Google Scholar

[5] I. Ziegler, R. Fournet, and P.M. Marquaire, Pyrolysis of propane for CVI of hydrocarbon, J. Anal. Appl. Pyrolysis, vol. 73, pp.212-230, (2005).

DOI: 10.1016/j.jaap.2004.12.005

Google Scholar

[6] J.A. Franz, D.M. Camaioni, T. Autrey, J.G. Linehan, and M.S. Alnajjar, Measurement of select radical processes in hydrocarbon pyrolysis, J. Anal. App. Pyrolysis, vol. 54, pp.37-64, (2000).

DOI: 10.1016/s0165-2370(99)00079-0

Google Scholar

[7] R. Bounaceur, et al, Modeling of hydrocarbons pyrolysis at low temperature, J. Anal. Appl. Pyrolysis, vol. 64, pp.103-122, (2002).

Google Scholar

[8] P.H. Schmich, H.J. Ederer, and K.H. Ebert, Detection and identification of free radicals in hydrocarbon pyrolysis, Ind. Eng. Chem. Res., vol. 31, no. 1, p.29–37, (1992).

DOI: 10.1021/ie00001a005

Google Scholar

[9] F. Billaud, Marc. Duret, K. Elyahyaoui, and F. Baronnet, Survey of recent cyclohexane pyrolysis literature and stoichiometric analysis of cyclohexane decomposition, Ind. Eng. Chem. Res., vol. 30, no. 7, pp.1469-1478, (1991).

DOI: 10.1021/ie00055a011

Google Scholar

[10] J.H. Kiefer, K.S. Gupte , L.B. Harding, and S.J. Klippenstein, Shock Tube and Theory Investigation of Cyclohexane and 1-Hexene Decomposition, J. Phys. Chem. A, vol. 113, p.13570–13583, (2009).

DOI: 10.1021/jp905891q

Google Scholar

[11] Y.X. Zhao, F. Wei, and Y. Yu, Formation of coke and minor products in 2-methylpentane cracking over USHY, AIChE. J., vol. 54, no. 3, pp.750-755, (2008).

DOI: 10.1002/aic.11412

Google Scholar

[12] P.O. Rice, and K.F. Herzfeld, The thermal decomposition of organic compounds from the standpoint of free radicals, J. Am. Chem. Soc., vol. 56, pp.284-289, (1934).

DOI: 10.1021/ja01317a006

Google Scholar

[13] I.A. Wiehe, A solvent-resid phase diagram for tracking resid conversion, Ind. Eng. Chem. Res., vol. 31, pp.530-536, (1992).

DOI: 10.1021/ie00002a013

Google Scholar

[14] M.R. Gray, and M.C. McCaffrey, Role of chain reactions and olefin formation in cracking, hydroconversion, and coking of petroleum and bitumen fractions, Energy & Fuel, vol. 16, pp.207-227, (2002).

DOI: 10.1021/ef010243s

Google Scholar

[15] Y.X. Zhao, G.R. Bamwenda, and B.W. Wojciechowski, Cracking Selectivity Patterns in the Presence of Chain Mechanisms, J. Catal., vol. 142, pp.465-489, (1993).

DOI: 10.1006/jcat.1993.1224

Google Scholar