[1]
Mann S, Molecular tectonics in biomineralization and biomimetic materials chemistry [J], Nature. 1993, 365: 499-505.
DOI: 10.1038/365499a0
Google Scholar
[2]
J. Rieger, J, Thieme, C. Study of Precipitation Reactions by X-ray Microscopy: CaCO3 Precipitation and the Effect of Polycarboxylates [J], Langmuir. 2000, 16: 8300-8305.
DOI: 10.1021/la0004193
Google Scholar
[3]
Li M, Mann S, Emergence of Morphological Complexity in BaSO4 Fibers Synthesized in AOT Microemulsions [J], Langmuir. 2000, 16: 7088-7094.
DOI: 10.1021/la0000668
Google Scholar
[4]
Dirkksen J A, Ring T A, Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology [J], Chem. Eng. Sci. 1991, 46: 2389-2394.
DOI: 10.1016/0009-2509(91)80035-w
Google Scholar
[5]
JIA Zhi-qian, LIu Zhong-zhou, HE Fei. Synthesis of nanosized BaSO4 and CaCO3 particles with a membrane reactor: effects of additives on particles [J]. Journal of Colloid and Interface Science, 2003, 266: 322–327.
DOI: 10.1016/s0021-9797(03)00187-5
Google Scholar
[6]
Johannes G, Hans-Christoph S, Florian S, Michael M, Wolfgang P. Precipitation of nanoparticles in a T-mixer: Coupling the particle population dynamics with hydrodynamics through direct numerical simulation [J]. Chemical Engineering and Processing, 2006, 45: 908–916.
DOI: 10.1016/j.cep.2005.11.012
Google Scholar
[7]
Elperin I T, Heat and mass transfer in opposing currents [J], J. Eng. Phys. 1961, 6: 62–68.
Google Scholar
[8]
Asha G, Preetam S, Shivakumara C, Synthesis of BaSO4 nanoparticles by precipitation method using sodium hexametaphosphate as a stabilizer[J]. Solid State Communications, 2010, 150: 386-388.
DOI: 10.1016/j.ssc.2009.11.039
Google Scholar
[9]
Takiyama K, Formation and Aging of Precipitates. IX. Formation of Monodispersed Particles (2) Barium Sulfate Precipitate by EDTA Method [J], Bull. Chem. Soc. Jpn. 1958, 31: 950–953.
DOI: 10.1246/bcsj.31.950
Google Scholar
[10]
Van der Leeden M C, Van Rosmalen G M, Effect of the molecular weight of polyphosphinoacrylates on their performance in BaSO4 growth retardation[J], J. Cryst. Growth, 1990, 100: 109–116.
DOI: 10.1016/0022-0248(90)90613-p
Google Scholar
[11]
Kipp S, Lacmann R, Reichelt M, Tailor-made additives to influence the habit of barite (BaSO4) obtained by precipitation[J], Chem. Eng. Tech. 1996, 19: 543–549.
DOI: 10.1002/ceat.270190612
Google Scholar
[12]
Bhari M N, Haznan A, Kwang Deog J, Kye S Y, Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization[J]. Journal of Colloid and Interface Science, 2007, 316: 645–651.
DOI: 10.1016/j.jcis.2007.09.004
Google Scholar
[13]
Bala H, Fu W, Zhao J, Ding X, Jiang Y, In situ preparation and surface modification of barium sulfate nanoparticles[J], Colloids Surf. A, 2005, 252: 71-76.
Google Scholar
[14]
Judat B, Kind M, Morphology and internal structure of barium sulfate—derivation of a new growth mechanism [J], J. Colloid Interface Sci. 2004, 269: 341-353.
DOI: 10.1016/j.jcis.2003.07.047
Google Scholar
[15]
Li M, Colfen H, Mann S, Morphological control of BaSO4 microstructure by double hydrophilic block copolymer mixtures[J], J. Mater. Chem. 2004, 14: 2269-2276.
DOI: 10.1039/b400803k
Google Scholar
[16]
Asha G, Preetam S. Shivakumara C, Synthesis of nanoparticles by precipitation method using sodium hexa metaphosphate as a stabilizer[J], Solid State Communications, 2010, 150(10): 386-388.
DOI: 10.1016/j.ssc.2009.11.039
Google Scholar
[17]
Robinson K L, Weaver J V M, Armes S P, Synthesis of controlled-structure sulfate-based copolymers via atom transfer radical polymerization and their use as crystal habit modifiers for BaSO4[J], J. Mater. Chem. 2002, 12: 890-896.
DOI: 10.1039/b200348c
Google Scholar
[18]
Won D C Y, Jaworski, G Z, Nienow A W, Effect of ion excess on particle size and morphology during Barium Sulphate precipitation: an experimental study [J], Chem. Eng. Sci. 2001, 56: 727-734.
DOI: 10.1016/s0009-2509(00)00282-7
Google Scholar
[19]
Fournier M C. A new parallel competing reaction system for assessing micromixing efficiency—experimental approach, Chem. Eng. Sci. 1996, 51 (22): 5053–5064.
DOI: 10.1016/0009-2509(96)00270-9
Google Scholar
[20]
Guichardon P, Falk L. Characterization of micromixing by the iodide–iodate reaction system. Part I: experimental procedure, Chem. Eng. Sci. 2000, 55: 4233–4243.
DOI: 10.1016/s0009-2509(00)00068-3
Google Scholar
[21]
Fournier M C, Falk L, Villermaux J, A new parallel competing reaction system for assessing micromixing efficiency-determination of micromixing time by a simple mixing model, Chem. Eng. Sci. 1996, 51 (23) : 5187–5192.
DOI: 10.1016/s0009-2509(96)00340-5
Google Scholar
[22]
Phillips R, Rohani S, Baldyga J. Micromixing in a single-feed semibatch precipitation process, AIChE J. 1999, 45 (1): 82–92.
DOI: 10.1002/aic.690450108
Google Scholar
[23]
Jones F, Jones P, Mark I O, The interaction of EDTA with barium sulfate[J], Journal of Colloid and Interface Science, 2007, 316: 553-561.
DOI: 10.1016/j.jcis.2007.09.005
Google Scholar