Preparation and Investigation on the Adsorption Behavior of Polyethylene Glycol Modified Sodium Alginate Porous Membrane Adsorbent for Cr(III) Ions

Article Preview

Abstract:

- In this study, sodium alginate based porous membrane adsorbents (GA/SA) were prepared by using polyethylene glycol (PEG) as porogen and glutaraldehyde (GA) as cross-linking agent. The prepared GA/SA were used to remove Cr (III) ions from wastewater to test its adsorption performance. The proposed technique is very convenient for operation. The batch experiments were performed to investigate the adsorption kinetics of Cr (III) ions from aqueous solution under different conditions, such as the amount of PEG in the GA/SA, pH of solution, initial Cr (III) ions concentration, adsorbent dose and contact time. The GA/SA exhibited the maximum uptake capacity of 57.4 mg/g under the optimal condition. The experiment results show that the adsorption is high pH-dependent. Various kinetic models were applied to examine the mechanism of adsorption processes. Pseudo-second-order kinetic model exhibits the best correlation with experimental data. The kinetic experiment results show that the adsorption of Cr (III) ions is a multistep limited adsorption process. Out of Langmuir and Freundlich isotherm equations, the batch equilibrium data are better described by the Freundlich isotherm equation. The prepared GA/SA could be considered as a potential low-cost and high-effective bio-sorbent for removing and recovering Cr (III) ions from the aqueous solutions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

786-795

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Li, J. P. Zhai, W. Y. Zhang, M. M. Wang, J. Zhou, Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk, J. Hazard. Mater., vol. 141, no. 1 pp.163-167, March (2007).

DOI: 10.1016/j.jhazmat.2006.06.109

Google Scholar

[2] J. Romero-Gonz´alez, J. C. Walton, J. R. Peralta-Videa, E. Rodr´ıguez, J. Romerod, J. L. Gardea-Torresdey, Modeling the adsorption of Cr(III) from aqueous solution onto Agave lechuguilla biomass: Study of the advective and dispersive transport, J. Hazard. Mater., vol. 161, no. 1, pp.360-365, January (2009).

DOI: 10.1016/j.jhazmat.2008.03.102

Google Scholar

[3] T. H. Shi, S. G. Jia, Y. Chen, Y. H. Wen, et al., Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution, J. Hazard. Mater., vol. 169, no. 1-3, pp.838-846, September (2009).

DOI: 10.1016/j.jhazmat.2009.04.020

Google Scholar

[4] Y. Wu, S. Z. Zhang, X. Y. Guo, H. L. Huang, Adsorption of chromium (III) on lignin, Bioresour. Technol., vol. 99, no. 16, pp.7709-7715, November (2008).

DOI: 10.1016/j.biortech.2008.01.069

Google Scholar

[5] F. Gode, E. Pehlivan, Removal of chromium(III) from aqueous solutions using LewatitS 100: the effect of pH, time, metal concentration and temperature, J. Hazard. Mater., vol. 136, no. 2, pp.330-337, August (2006).

DOI: 10.1016/j.jhazmat.2005.12.021

Google Scholar

[6] X. Huang, X. P. Liao, B. Shi, Tannin-immobilized mesoporous silica bead (BT-SiO2) as an effective adsorbent of Cr(III) in aqueous solutions, J. Hazard. Mater., vol. 173, no. 1-3, pp.33-39, January (2010).

DOI: 10.1016/j.jhazmat.2010.02.012

Google Scholar

[7] A. Lodi, D. Soletto, C. Solisio, A. Converti, Chromium(III) removal by Spirulina platensis biomass, Chem. Eng. J., vol. 136, no. 2-3, pp.151-155, March (2008).

DOI: 10.1016/j.cej.2007.03.032

Google Scholar

[8] Y. H. Wu, B. Li, S. X. Feng, X. M. Mi, J. L. Jiang, Adsorption of Cr(VI) and As(III) on coaly activated carbon in single and binary systems, Desalination, vol. 249, no. 3, pp.1067-1073, December (2009).

DOI: 10.1016/j.desal.2009.06.049

Google Scholar

[9] Y. B. Zeng, H. Woo, G. H. Lee, J. B. Park, Adsorption of Cr(VI) on hexadecylpyridinium bromide (HDPB) modified natural zeolites, Micropor. Mesopor. Mater., vol. 130, no. 1-3, pp.83-91, May (2010).

DOI: 10.1016/j.micromeso.2009.10.016

Google Scholar

[10] P. K. Ghosh, Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons, J. Hazard. Mater., vol.J. Hazard. Mater. 171, no. 1-3, pp.116-122 November (2009).

DOI: 10.1016/j.jhazmat.2009.05.121

Google Scholar

[11] J. Y. Qiu, Z. Y. Wang, L. Xu, J. Peng, et al, Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting., J. Hazard. Mater., vol.J. Hazard. Mater. 166, no. 1, pp.270-276, July (2009).

DOI: 10.1016/j.jhazmat.2008.11.053

Google Scholar

[12] F. Venditti, F. Cuomo, A. Ceglie, L. Ambrosone, F. Lopez, Effects of sulfate ions and slightly acidic pH conditions on Cr(VI) adsorption onto silica gelatin composite, J. Hazard. Mater., vol.J. Hazard. Mater. 173, no. 1-3, pp.552-557, January (2010).

DOI: 10.1016/j.jhazmat.2009.08.121

Google Scholar

[13] Y. T. He, S. J. Traina, Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: the role of passivation, Environ. Sci. Technol., vol. 39, no. 12, pp.4499-4504, May (2005).

DOI: 10.1021/es0483692

Google Scholar

[14] F. J. Alguacil, M. Alonso, F. Lopez, A. L. Delgado, Uphill permeation of Cr(VI) using Hostarex A327 as ionophore by membrane-solvent extraction processing, Chemosphere, vol. 72, no. 4, pp.684-689, June (2008).

DOI: 10.1016/j.chemosphere.2008.02.030

Google Scholar

[15] M. M. Nasef, A. H. Yahaya, Adsorption of some heavy metal ions from aqueous solutions on Nafion 117 membrane, Desalination, vol. 249, no. 2, pp.677-681, December (2009).

DOI: 10.1016/j.desal.2008.12.059

Google Scholar

[16] K. Y. Wang, T. S. Chung, Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate, J. Membr. Sci., vol. 281, no. 1-2, pp.307-315, September (2006).

DOI: 10.1016/j.memsci.2006.03.045

Google Scholar

[17] S. S. Barala, N. Das, G. R. Chaudhury, S. N. Das, A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata, J. Hazard. Mater., J. Hazard. Mater. vol.J. Hazard. Mater. 171, no. 1-3, pp.358-369, November (2009).

DOI: 10.1016/j.jhazmat.2009.06.011

Google Scholar

[18] M. X. Loukidou, A. I. Zouboulis, T. D. Karapantsios, K. A. Matis, Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae, Colloids Surf. A: Physicochem. Eng. Aspects, vol. 242, no. 1-3, pp.93-104, August (2004).

DOI: 10.1016/j.colsurfa.2004.03.030

Google Scholar

[19] B. Preetha, T. Viruthagiri, Batch and continuous bisorption of chromium(VI) by Rhizopuc arrhizus, Sep. Purif. Technol., vol. 57, no. 1, pp.126-133, October (2007).

DOI: 10.1016/j.seppur.2007.03.015

Google Scholar

[20] P. Agrawal, R. Patil, N. Kalyaneb, U. V. A. Joshi, Formulation and in-vitro evaluation of Zidovudine loaded calcium alginate microparticles containing copolymer, J. Pharm. Res., vol. 3, no. 3, pp.486-490, February (2010).

Google Scholar

[21] G. A. Susheelkumar, S. M. Lata, D. B. Santoshkumar, M. A. Tejraj, Aluminum-rich zeolite beta incorporated sodium alginate mixed matrix membranes for pervaporation dehydration and esterification of ethanol and acetic acid, J. Membr. Sci., vol. 318, no. 1-2, pp.233-246, June (2008).

DOI: 10.1016/j.memsci.2008.02.043

Google Scholar

[22] J. H. Chen, Q. L. Liu, Y. Xiong, Q. G. Zhang, A. M. Zhu, Composite membranes prepared from glutaraldehyde cross-linked sulfonated cardo polyetherketone and its blends for the dehydration of acetic acid by pervaporation, J. Membr. Sci., vol. 325, no. 1, pp.184-191, November (2008).

DOI: 10.1016/j.memsci.2008.07.027

Google Scholar

[23] B. G. Lokesh, K.S.V. Krishna Rao, K. Mallikarjuna Reddy, K. Chowdoji Rao, P. Srinivasa Rao, Novel nanocomposite membranes of sodium alginate filled with polyaniline-coated titanium dioxide for dehydration of 1, 4-dioxane/water mixtures, Desalination, vol. 233, no. 1-3, pp.166-172, December (2008).

DOI: 10.1016/j.desal.2007.09.039

Google Scholar

[24] G. Q. Shi, Y. W. Chen, C. X. Wan, X. X. Yu, T. Feng, Y. L. Ding, Study on the preparation of chitosan–alginate complex membrane and the effects on adhesion and activation of endothelial cells, Appli. Surf. Sci., vol. 255, no. 2, pp.422-425, November (2008).

DOI: 10.1016/j.apsusc.2008.06.153

Google Scholar

[25] A. D. Eaton, L. S. Clesceri, A. E. Greenberg, Standard Methods for the Examination of Water and Wastewater, 20 th ed., American Public Health Association, Washington, DC. (1999).

Google Scholar

[26] M. Rafatullah, O. Sulaiman, R. Hashima, A. Ahmad, Adsorption of copper (II), chromium (III), nickel (II) and lead(II) ions from aqueous solutions by meranti sawdust, J. Hazard. Mater., vol. 170, no. 2-3, pp.969-977, October (2009).

DOI: 10.1016/j.jhazmat.2009.05.066

Google Scholar

[27] P. Lodeiro, A. Fuentes, R. Herrero, M. E. Sastre de Vicente, Cr (III) binding by surface polymers in natural biomass: the role of carboxylic groups, Environ. Chem., vol. 5, no. 5, pp.355-365, October (2008).

DOI: 10.1071/en08035

Google Scholar

[28] P. Miretzky, A. Fernandez Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review, J. Hazard. Mater., vol. 180, no. 1-3, pp.1-19, August (2010).

DOI: 10.1016/j.jhazmat.2010.04.060

Google Scholar

[29] P. A. Kumar, M. Ray, S. Chakraborty, Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate, Chem. Eng. J., vol. 149, no. 1-3, pp.340-347, July (2009).

DOI: 10.1016/j.cej.2008.11.030

Google Scholar

[30] Y. H. Liu, L. Guo, J. Chen, Removal of Cr(III, VI) by quaternary ammonium and quaternary phosphonium ionic liquids functionalized silica materials, Chem. Eng. J., vol. 158, no. 2, pp.108-114, April (2010).

DOI: 10.1016/j.cej.2009.12.012

Google Scholar