[1]
Y.X. Xu, C.X. Chen, and J.D. Li, Experimental study on physical properties and pervaporation performances of polyimide membranes, Chem. Eng. Sci., vol. 62, pp.2466-2473, (2007).
DOI: 10.1016/j.ces.2007.01.019
Google Scholar
[2]
X.Z. Fang, Z.H. Yang, S.B. Zhang, L.X. Gao, and M.X. Ding, Synthesis and properties of polyimides derived from cis- and trans-1, 2, 3, 4-cyclohexanetetracarboxylic dianhydrides, Polymer, vol. 45, pp.2539-2549, (2004).
DOI: 10.1016/j.polymer.2004.02.008
Google Scholar
[3]
Y.Q. Zhu, P.Q. Zhao, X.D. Cai, W.D. Meng, and F.L. Qing, Synthesis and characterization of novel fluorinated polyimides derived from bis[4-(4'-aminophenoxy)phenyl]-3, 5-bis(trifluoromethyl)phenyl phosphine oxide, Polymer, vol. 48, pp.3116-3124, (2007).
DOI: 10.1016/j.polymer.2007.03.057
Google Scholar
[4]
M.C. William and M.C. Donald, Evaluation of materials for Venus aerobot applications, The 35th AIAA thermophysics conference, Anaheim, (2001).
Google Scholar
[5]
W.N. Leng, Y.M. Zhou, Q.H. Xu, and J.Z. Liu. Synthesis of nonlinear optical polyimides containing benzothiazole moiety and their electro-optical and thermal properties, Polymer, vol. 42, pp.9253-9259, (2001).
DOI: 10.1016/s0032-3861(01)00464-5
Google Scholar
[6]
J.F. Wolfe and F.E. Arnold, Rigid-rod polymers. 1. Synthesis and thermal properties of para-aromatic polymers with 2, 6-benzobisoxazole units in the main chain, Macromolecules, vol. 14, pp.909-915, (1981).
DOI: 10.1021/ma50005a004
Google Scholar
[7]
A. Yavrouian, G. Plett, S.P.S. Yen, J. Cutts and D. Baek, Evaluation of materials for Venus aerobot applications,. AIAA International Balloon Technology Conference, Norfolk. 1999, p.90.
DOI: 10.2514/6.1999-3859
Google Scholar
[8]
X.L. Meng, Y.D. Huang, H. Yu, and Z.S. Lv, Thermal degradation kinetics of polyimide containing 2, 6-benzobisoxazole units, Polym. Degrad. Stab., vol. 92, pp.962-967, (2007).
DOI: 10.1016/j.polymdegradstab.2007.03.005
Google Scholar
[9]
X.L. Meng, Y.D. Huang, Z.S. Lv and H. Yu, (2009) Synthesis and properties of novel polyimides containing 2, 6-benzobisoxazole units, e-Polymers, 38, pp.1-8, (2009).
DOI: 10.1515/epoly.2009.9.1.460
Google Scholar
[10]
N. Regnier and C. Guibe, Methodology for multistage degradation of polyimide polymer, Polym. Degrad. Stab., vol. 55, pp.165-172, (1997).
DOI: 10.1016/s0141-3910(96)00115-2
Google Scholar
[11]
G.K.P. Santhana, H.V. Rohit, S. Veeramania, S.H. Gohc and T.S. Chunga, Kinetics of thermal degradation of 6FDA based copolyimides-I, Polym. Degrad. Stab., vol. 75, pp.273-285, (2002).
DOI: 10.1016/s0141-3910(01)00230-0
Google Scholar
[12]
A.C. Lua and J.C. Su, Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide, Polym. Degrad. Stab., vol. 91, pp.144-153, (2006).
DOI: 10.1016/j.polymdegradstab.2005.04.021
Google Scholar
[13]
K.P. Pramoda, T.S. Chung, S.L. Liu, H. Oikawa and A. Yamaguchi, Characterization and thermal degradation of polyimide and polyamide liquid crystalline polymers., Polym. Degrad. Stab., vol. 67, pp.365-374, (2000).
DOI: 10.1016/s0141-3910(00)00026-4
Google Scholar
[14]
S.H. Hsiao and Y.J. Chen, Structure-property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines, Eur. Polym. J., vol. 38, pp.815-828, (2002).
DOI: 10.1016/s0014-3057(01)00229-4
Google Scholar
[15]
Y. Oishi and M.A. Kakimoto, Synthesis of aromatic polyimides from N, N'-bis(trimethylsilyl)-substituted aromatic diamines and aromatic teracarboxylic dianhydrides, Macromolecules, vol. 24, pp.3475-3480, (1991).
DOI: 10.1021/ma00012a002
Google Scholar
[16]
T. Sunan, D. Siriporn, A. Shinji, H. Dasinee and R. Sarawut, Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends, Polym. Degrad. Stab. vol, 92, pp.1265-1278, (2007).
DOI: 10.1016/j.polymdegradstab.2007.03.021
Google Scholar
[17]
L.Q. Li, C.X. Guan, A.Q. Zhang, D.H. Chen and Z.B. Qing, Thermal stabilities and the thermal degradation kinetics of polyimides, Polym. Degrad. Stab. vol. 84, pp.369-373, (2004).
DOI: 10.1016/j.polymdegradstab.2003.11.007
Google Scholar
[18]
C. Popescu, Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method, Thermochim Acta, vol. 285, pp.309-323, (1996).
DOI: 10.1016/0040-6031(96)02916-4
Google Scholar
[19]
D.R. Dowdy, Meaningful activation energies of complex systems-I. The application of the Ozawa-Flynn-Wall method to multiple reactions, J. Therm. Anal., vol. 32, pp.137-147, (1987).
DOI: 10.1007/bf01914556
Google Scholar
[20]
A.W. Coats and J.P. Redfern, Kinetic parameters from the thermogravimetric data, Nature, vol. 201, pp.68-69, (1964).
DOI: 10.1038/201068a0
Google Scholar
[21]
E. Tomaszewicz, M. Kotfica. Mechanism and kinetics of thermal decomposition of nickel(II) sulfate(VI) hexahydrate, J. Therm. Anal. Calorim., vol. 77, pp.25-31, (2004).
DOI: 10.1023/b:jtan.0000033184.32714.7f
Google Scholar
[22]
J.T. Sun, Y.D. Huang, H.L. Cao and G.F. Gong, Effects of ambient-temperature curing agents on the thermal stability of poly(methyl phenylsiloxane) , Polym. Degrad. Stab. vol. 85, pp.725-731, (2004).
DOI: 10.1016/j.polymdegradstab.2004.03.018
Google Scholar
[23]
L. Núñez, F. Fraga, M.R. Núñez and M. Villanueva, Thermogravimetric study of the decomposition process of the system BADGE(n=0)/1, 2DCH, Polymer. Vol. 41, pp.4635-4641, (2000).
DOI: 10.1016/s0032-3861(99)00687-4
Google Scholar