Characterization and Thermal Degradation of Polyimide Derived from 5-amino-2(p-aminophenyl) Benzoxazole Monomer with Pyromellitic Dianhydride

Article Preview

Abstract:

- 5-amino-2(p-aminophenyl) benzoxazole (AAPB) and its derived polyimide prepared with pyromellitic dianhydride (PMDA) were synthesized successfully. Their structures were characterized by FT-IR, 1H NMR, Element analysis, 13C NMR, Solid-state 13CNMR, DSC, TG and XRD. The polyimide was synthesized via a conventional two-stage method. The intermediate poly (amic acid) had inherent viscosity of 1.06dL/g and could be thermally converted into light yellow polyimide film. The polyimide showed excellent solvent resistance and good thermal stability. The glass transition temperature (Tg) was found to be 314°C, the decomposition started at a temperature above 500°C in air and above 550°C in argon atmosphere. The thermal degradation of the polyimide was studied by thermogravimetric analysis (TGA) in order to determine the actual reaction mechanisms of the decomposition process. The apparent activation energy (Ea) was obtained following Flynn-Wall-Ozawa method. The activation energies of different mechanism models and pre-exponential factor (A) were determined by Coats-Redfern method. Compared with the value obtained from the Ozawa method, the actual reaction mechanism obeyed three-dimensional diffusion model, Jander equation (D3) with integral form g(α)=[1-(1-α)1/3]2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

806-814

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.X. Xu, C.X. Chen, and J.D. Li, Experimental study on physical properties and pervaporation performances of polyimide membranes, Chem. Eng. Sci., vol. 62, pp.2466-2473, (2007).

DOI: 10.1016/j.ces.2007.01.019

Google Scholar

[2] X.Z. Fang, Z.H. Yang, S.B. Zhang, L.X. Gao, and M.X. Ding, Synthesis and properties of polyimides derived from cis- and trans-1, 2, 3, 4-cyclohexanetetracarboxylic dianhydrides, Polymer, vol. 45, pp.2539-2549, (2004).

DOI: 10.1016/j.polymer.2004.02.008

Google Scholar

[3] Y.Q. Zhu, P.Q. Zhao, X.D. Cai, W.D. Meng, and F.L. Qing, Synthesis and characterization of novel fluorinated polyimides derived from bis[4-(4'-aminophenoxy)phenyl]-3, 5-bis(trifluoromethyl)phenyl phosphine oxide, Polymer, vol. 48, pp.3116-3124, (2007).

DOI: 10.1016/j.polymer.2007.03.057

Google Scholar

[4] M.C. William and M.C. Donald, Evaluation of materials for Venus aerobot applications, The 35th AIAA thermophysics conference, Anaheim, (2001).

Google Scholar

[5] W.N. Leng, Y.M. Zhou, Q.H. Xu, and J.Z. Liu. Synthesis of nonlinear optical polyimides containing benzothiazole moiety and their electro-optical and thermal properties, Polymer, vol. 42, pp.9253-9259, (2001).

DOI: 10.1016/s0032-3861(01)00464-5

Google Scholar

[6] J.F. Wolfe and F.E. Arnold, Rigid-rod polymers. 1. Synthesis and thermal properties of para-aromatic polymers with 2, 6-benzobisoxazole units in the main chain, Macromolecules, vol. 14, pp.909-915, (1981).

DOI: 10.1021/ma50005a004

Google Scholar

[7] A. Yavrouian, G. Plett, S.P.S. Yen, J. Cutts and D. Baek, Evaluation of materials for Venus aerobot applications,. AIAA International Balloon Technology Conference, Norfolk. 1999, p.90.

DOI: 10.2514/6.1999-3859

Google Scholar

[8] X.L. Meng, Y.D. Huang, H. Yu, and Z.S. Lv, Thermal degradation kinetics of polyimide containing 2, 6-benzobisoxazole units, Polym. Degrad. Stab., vol. 92, pp.962-967, (2007).

DOI: 10.1016/j.polymdegradstab.2007.03.005

Google Scholar

[9] X.L. Meng, Y.D. Huang, Z.S. Lv and H. Yu, (2009) Synthesis and properties of novel polyimides containing 2, 6-benzobisoxazole units, e-Polymers, 38, pp.1-8, (2009).

DOI: 10.1515/epoly.2009.9.1.460

Google Scholar

[10] N. Regnier and C. Guibe, Methodology for multistage degradation of polyimide polymer, Polym. Degrad. Stab., vol. 55, pp.165-172, (1997).

DOI: 10.1016/s0141-3910(96)00115-2

Google Scholar

[11] G.K.P. Santhana, H.V. Rohit, S. Veeramania, S.H. Gohc and T.S. Chunga, Kinetics of thermal degradation of 6FDA based copolyimides-I, Polym. Degrad. Stab., vol. 75, pp.273-285, (2002).

DOI: 10.1016/s0141-3910(01)00230-0

Google Scholar

[12] A.C. Lua and J.C. Su, Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide, Polym. Degrad. Stab., vol. 91, pp.144-153, (2006).

DOI: 10.1016/j.polymdegradstab.2005.04.021

Google Scholar

[13] K.P. Pramoda, T.S. Chung, S.L. Liu, H. Oikawa and A. Yamaguchi, Characterization and thermal degradation of polyimide and polyamide liquid crystalline polymers., Polym. Degrad. Stab., vol. 67, pp.365-374, (2000).

DOI: 10.1016/s0141-3910(00)00026-4

Google Scholar

[14] S.H. Hsiao and Y.J. Chen, Structure-property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines, Eur. Polym. J., vol. 38, pp.815-828, (2002).

DOI: 10.1016/s0014-3057(01)00229-4

Google Scholar

[15] Y. Oishi and M.A. Kakimoto, Synthesis of aromatic polyimides from N, N'-bis(trimethylsilyl)-substituted aromatic diamines and aromatic teracarboxylic dianhydrides, Macromolecules, vol. 24, pp.3475-3480, (1991).

DOI: 10.1021/ma00012a002

Google Scholar

[16] T. Sunan, D. Siriporn, A. Shinji, H. Dasinee and R. Sarawut, Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends, Polym. Degrad. Stab. vol, 92, pp.1265-1278, (2007).

DOI: 10.1016/j.polymdegradstab.2007.03.021

Google Scholar

[17] L.Q. Li, C.X. Guan, A.Q. Zhang, D.H. Chen and Z.B. Qing, Thermal stabilities and the thermal degradation kinetics of polyimides, Polym. Degrad. Stab. vol. 84, pp.369-373, (2004).

DOI: 10.1016/j.polymdegradstab.2003.11.007

Google Scholar

[18] C. Popescu, Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method, Thermochim Acta, vol. 285, pp.309-323, (1996).

DOI: 10.1016/0040-6031(96)02916-4

Google Scholar

[19] D.R. Dowdy, Meaningful activation energies of complex systems-I. The application of the Ozawa-Flynn-Wall method to multiple reactions, J. Therm. Anal., vol. 32, pp.137-147, (1987).

DOI: 10.1007/bf01914556

Google Scholar

[20] A.W. Coats and J.P. Redfern, Kinetic parameters from the thermogravimetric data, Nature, vol. 201, pp.68-69, (1964).

DOI: 10.1038/201068a0

Google Scholar

[21] E. Tomaszewicz, M. Kotfica. Mechanism and kinetics of thermal decomposition of nickel(II) sulfate(VI) hexahydrate, J. Therm. Anal. Calorim., vol. 77, pp.25-31, (2004).

DOI: 10.1023/b:jtan.0000033184.32714.7f

Google Scholar

[22] J.T. Sun, Y.D. Huang, H.L. Cao and G.F. Gong, Effects of ambient-temperature curing agents on the thermal stability of poly(methyl phenylsiloxane) , Polym. Degrad. Stab. vol. 85, pp.725-731, (2004).

DOI: 10.1016/j.polymdegradstab.2004.03.018

Google Scholar

[23] L. Núñez, F. Fraga, M.R. Núñez and M. Villanueva, Thermogravimetric study of the decomposition process of the system BADGE(n=0)/1, 2DCH, Polymer. Vol. 41, pp.4635-4641, (2000).

DOI: 10.1016/s0032-3861(99)00687-4

Google Scholar