[1]
Xiaofei Zhao, Fazhi Zhang, Sailong Xu, David G. Evans, and Xue Duan, From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking Properties of the Product, Chem. Mater., Vol. 22, pp.3933-3942, May, (2010).
DOI: 10.1021/cm100383d
Google Scholar
[2]
L.H. Zhang, X. Xiang, L. Zhang, F. Li, J. Zhu, D.G. Evans, X. Duan., Influence of iron substitution on formation and structure of Cu-based mixed oxides derived from layered double hydroxides, J. Phys. Chem. Sol., Vol. 69, pp.1098-1101, October, (2007).
DOI: 10.1016/j.jpcs.2007.10.002
Google Scholar
[3]
Yun Zhao, Feng Li, Rui Zhang, David G. Evans, and Xue Duan, Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps, Chem. Mater., Vol. 14, pp.4286-4291, August, (2002).
DOI: 10.1021/cm020370h
Google Scholar
[4]
David G. Evans and Xue Duan, Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine, Chem. Commun., p.584, November, (2005).
DOI: 10.1039/b510313b
Google Scholar
[5]
Thomas Mathew, N. R. Shiju, K. Sreekumar, Bollapragada S. Rao, and Chinnakonda S. Gopinath, Cu-Co Synergism in Cu1−xCoxFe2O4 Catalysis and XPS Aspects, J. Catal., Vol. 210, pp.405-417, June (2002).
DOI: 10.1006/jcat.2002.3712
Google Scholar
[6]
Wei Huang, Zhijun Zuo, Peide Han, Zhihong Li, and Tingdong Zhao, XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods, J. Electron Spectrosc., Vol. 173, pp.88-95, May (2009).
DOI: 10.1016/j.elspec.2009.05.012
Google Scholar
[7]
Kimihiro Asano, Chie Ohnishi, Shinji Iwamoto, Yasushi Shioya, and Masashi Inoue, Potassium-doped Co3O4 catalyst for direct decom p- osition of N2O, Appl. Catal. B-Environ, Vol. 78, pp.242-249, September, (2007).
DOI: 10.1016/j.apcatb.2007.09.016
Google Scholar
[8]
Rui Xu, Jiawei Wang, Qiuyu Li, Guoying Sun, Enbo Wang, Siheng Li, et al., Porous cobalt oxide(Co3O4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries, J. Solid State Chem., Vol. 182, pp.3177-3182, September, (2009).
DOI: 10.1016/j.jssc.2009.08.033
Google Scholar
[9]
Masaoki Oku, Toetsu Shishido, Hideyuki Matsuta, Kazuaki Wagatsuma, Comparison of the background corrected valence band XPS spectra of Fe and Co aluminides and silicides with their electronic structures, J. Electron Spectrosc. Vol. 153, pp.75-80, June, (2006).
DOI: 10.1016/j.elspec.2006.06.006
Google Scholar
[10]
John Vakros, Christos Kordulis, and Alexis Lycourghiotis, Cobalt oxide supported α-Alumina catalyst with very high active surface area prepared by equilibrium deposition filtration, Langmuir, Vol. 18, pp.417-422, September, (2001).
DOI: 10.1021/la010040w
Google Scholar
[11]
Janusz Janas, Tadeusz Machej, Jacek Gurgul, Robert P. Socha, Michel Che, Stanislaw Dzwigaj, Effect of Co content on the catalytic activity of CoSiBEA zeolite in the selective catalytic reduction of NO with ethanol: Nature of the cobalt species, Appl. Catal. B-Environ, Vol. 75, pp.239-248, August, (2007).
DOI: 10.1016/j.apcatb.2007.07.029
Google Scholar
[12]
Leon G.A. van de Water, G. Leendert Bezemer, Jaap A. Bergwerff, Marjan Versluijs-Helder, Bert M. Weckhuysen, Krijn P. de Jong, Spatially resolved UV–vis microspectroscopy on the preparation of alumina-supported Co Fischer-Tropsch catalysts: Linking activity to Co distribution and speciation, J. Catal., Vol. 242, pp.287-298, July, (2006).
DOI: 10.1016/j.jcat.2006.06.004
Google Scholar