[1]
Zhanjiang Kang, Hongzhu Ma*, and Bo Wang, Removal of Thiophene from Coking Benzene over SO42-/Fe2O3 Solid Acid under Mild Conditions, Ind. Eng. Chem. Res., Vol. 48, pp.9346-9349, (2009).
DOI: 10.1021/ie901075t
Google Scholar
[2]
Chen, Hao; Wang, Yuhe; Yang, Frances H.; Yang, Ralph T., Desulfurization of high-sulfur jet fuel by mesoporous-complexation adsorbents, Chemical Engineering Science, Vol. 64, No. 24, pp.5240-5246, (2009).
DOI: 10.1016/j.ces.2009.08.031
Google Scholar
[3]
Alexander Samokhvalov, Evert C. Duin, Sachin Nair, Michael Bowman, Zenda Davis, and Bruce J. Tatarchuk, Study of the Surface Chemical Reactions of Thiophene with Ag/Titania by the Complementary Temperature-Programmed Electron Spin Resonance, Temperature-Programmed Desorption, and X-ray Photoelectron Spectroscopy: Adsorption, Desorption, and Sorbent Regeneration Mechanisms, J. Phys. Chem. C, Vol. 114, pp.4075-4085, (2010).
DOI: 10.1021/jp911458u
Google Scholar
[4]
Seeberger, Andreas; Jess, Andreas., Desulfurization of diesel oil by selective oxidation and extraction of sulfur compounds by ionic liquids-a contribution to a competitive process design, Green Chemistry, Vol. 12, No. 4, pp.602-608, (2010).
DOI: 10.1039/b918724c
Google Scholar
[5]
Wang, Rong; Li, Yonghong, Preparation of MCM-41 supported phosphoric acid catalyst for thiophenic compounds alkylation in FCC gasoline, Catalysis Communications, Vol. 11, No. 8, pp.705-709, (2010).
DOI: 10.1016/j.catcom.2010.01.025
Google Scholar
[6]
Lisette Jaimes, M. Lujan Ferreira, Hu gode Lasa*, Thiophene conversion under mild conditions over a ZSM-5 catalyst, Chemical Engineering Science, Vol. 64, pp.2539-2561, (2009).
DOI: 10.1016/j.ces.2009.01.070
Google Scholar
[7]
Zheng, Xue-dong; Dong, Hong-jun; Wang, Xin; Shi, Li, Study on Olefin Alkylation of Thiophenic Sulfur in FCC Gasoline Using La2O3-Modified HY Zeolite, Catalysis Letters, Vol. 127, No. 1-2, pp.70-74, (2009).
DOI: 10.1007/s10562-008-9625-z
Google Scholar
[8]
Agarwal, Prachi; Sharma, D. K., Comparative Studies on the Bio-desulfurization of Crude Oil with Other Desulfurization Techniques and Deep Desulfurization through Integrated Processes, Energy & Fuels, Vol. 24, No. 1, pp.518-524, (2010).
DOI: 10.1021/ef900876j
Google Scholar
[9]
Chen, Jian; Li, Jiding; Qi, Rongbin; Ye, Hong; Chen, Cuixian, Pervaporation separation of thiophene-heptane mixtures with polydimethylsiloxane (PDMS) membrane for desulfurization, Applied Biochemistry and Biotechnology, Vol. 160, No. 2, pp.486-497, (2010).
DOI: 10.1007/s12010-008-8368-z
Google Scholar
[10]
Chunshan Song*, An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catalysis Today, Vol. 86, pp.211-263, (2003).
DOI: 10.1016/s0920-5861(03)00412-7
Google Scholar
[11]
Jianlong Wang, Dishun Zhao* and Kaixi Li, Oxidative Desulfurization of Dibenzothiophene Using Ozone and Hydrogen Peroxide in Ionic Liquid, Energy&Fuels, Vol. 24, pp.2527-2529, (2010).
DOI: 10.1021/ef901324p
Google Scholar
[12]
Lo, W. H.; Yang, H. Y.; Wei, G. T., Green Chem., Vol. 5, pp.639-642, (2003).
Google Scholar
[13]
Guozhu Liu, Yanbin Cao, Rongpei Jiang, Li Wang*, Xiangwen Zhang, and Zhentao Mi, Oxidative Desulfurization of Jet Fuels and Its Impact on Thermal-Oxidative Stability, Energy&Fuels, Vol. 23, pp.5978-5985, (2009).
DOI: 10.1021/ef900669b
Google Scholar
[14]
Ramanathan Sundararaman, Xiaoliang Ma, and Chunshan Song*, Oxidative Desulfurization of Jet and Diesel Fuels Using Hydroperoxide Generated in Situ by Catalytic Air Oxidation, Ind. Eng. Chem. Res., Vol. 49, pp.5561-5568, (2010).
DOI: 10.1021/ie901812r
Google Scholar
[15]
Guido Busca, Acid Catalysts in Industrial Hydrocarbon Chemistry, Chem. Rev., Vol. 107, pp.5366-5410, (2007).
DOI: 10.1021/cr068042e
Google Scholar
[16]
J. M. Adams, Appl. Clay Sci., Vol. 2, p.309, (1987).
Google Scholar
[17]
J. P. Rupert, W. T. Granquist and T. J. Pinnavaia, in: A. C. D. Newmann (Ed. ), Chemistry of clays and clay minerals (Longman Scientific and Technical - The Mineralogical Soc., 1987).
Google Scholar
[18]
J. Lussier, J. Catal., Vol. 129, p.225, (1991).
Google Scholar
[19]
Carolina Belver, Miguel Angel Banares Munoz and Miguel Angel Vicente*, Chemical Activation of a Kaolinite under Acid and Alkaline Conditions, Chem. Mater., Vol. 14, pp.2033-2043, (2002).
DOI: 10.1021/cm0111736
Google Scholar
[20]
Ana G. San Cristobal*, Ricardo Castello, M. Angeles Martin Luengo, Carmen Vizcayno, Acid activation of mechanically and thermally modified kaolins, Materials Research Bulletin, Vol. 44, 2103-2111, (2009).
DOI: 10.1016/j.materresbull.2009.07.016
Google Scholar
[21]
Fernando G. Colina*, Santiago Esplugas, and Jose Costa, High-Temperature Reaction of Kaolin with Sulfuric Acid, Ind. Eng. Chem. Res., Vol. 41, pp.4168-4173, (2002).
DOI: 10.1021/ie010886v
Google Scholar
[22]
Mehmet R. Altiokka*, Halit L. Hosgun, Investigation of the dissolution kinetics of kaolin in HCl solution, Hydrometallurgy, Vol. 68, pp.77-81, (2003).
DOI: 10.1016/s0304-386x(02)00193-7
Google Scholar
[23]
A. Coma, Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev., Vol. 95, pp.559-614, (1995).
DOI: 10.1021/cr00035a006
Google Scholar
[24]
GB/T 14327-2009, Determination of thiophene content in benzene,issued by China State Bureau of Technical Supervision.
Google Scholar
[25]
J.F. Lambert , W.S. Millman, J.J. Fripiat, J. Am. Chem. Soc., Vol. 111, No. 10, pp.3517-3522, (1989).
Google Scholar
[26]
Lan ju Chen and Fa tang Li,Oxidation of Thiophene over Modified Alumina Catalyst under Mild Conditions,Energy Fuels, Vol. 24, pp.3443-3445,2010. (references).
DOI: 10.1021/ef1002205
Google Scholar