Adsorption of Phthalate Esters from Aqueous Solution by Mg–Al Layered Double Hydroxide

Article Preview

Abstract:

Mg–Al layered double hydroxide (Mg–Al LDH) was investigated for adsorption of dimethyl phthalate (DMP), di-(2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP) from water samples. The adsorption capability of the Mg–Al LDH was compared with that of activated carbon. Adsorption of the three phthalate esters (PAEs) fitted pseudo-second-order kinetics, and the Langmuir or Freundlich equations described the adsorption isotherms. Adsorption of the PAEs was exothermic, and was mainly dominated by physical interactions including dispersion, induction, orientation and hydrogen bond forces. Compared with activated carbon, the Mg–Al LDH removal efficiency of the relatively small PAE, DMP, was about 20 % lower. The removal efficiencies of the larger PAEs, DEHP and DOP, were about the same on both sorbents. After three regeneration cycles of the Mg–Al LDH at 300 °C for 2 h, its adsorption capacity remained above 90 %. The infrared (IR) spectra and the X-ray diffraction (XRD) patterns for the Mg-Al-LDH before and after regeneration showed no large differences, which indicates that the structure of the Mg–Al LDH does not change after regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

939-946

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Silva, E. Samandar, J. A. Reidy, R. Hauser, L. L. Needham, and A. M. Calafat, Metabolite profiles of di-n-butyl phthalate in humans and rats, Environ. Sci. Technol. 41 (2007) 7576–7580.

DOI: 10.1021/es071142x

Google Scholar

[2] Y. Okamoto, T. Hayashi, C. Toda, K. Ueda, K. Hashizume, K. Itoh, J. Nishikawa, T. Nishihara, N. Kojima, Formation of estrogenic products from environmental phthalate esters under light exposure, Chemosphere. 64 (2006) 1785–1792.

DOI: 10.1016/j.chemosphere.2005.12.046

Google Scholar

[3] N. R. Janjua, G. K. Mortensen, A. M. Andersson, B. Kongshoj, N. E. Skakkebæk, H. C. Wulf, Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans, Environ. Sci. Technol. 41 (2007).

DOI: 10.1021/es0628755

Google Scholar

[4] C. E. Mackintosh, J. A. Maldonado, M. G. Ikonomou, F. A. P. C. Gobas, Sorption of phthalate esters and PCBs in a marine ecosystem, Environ. Sci. Technol. 40 (2006) 3481–3488.

DOI: 10.1021/es0519637

Google Scholar

[5] J. P. Zhu, S. P. Phillips, Y. L. Feng, X. F. Yang, Phthalate esters in human milk: Concentration variations over a 6-month postpartum time, Environ. Sci. Technol. 40 (2006) 5276–5281.

DOI: 10.1021/es060356w

Google Scholar

[6] P. D. Gennaro, E. Collina, A. Franzetti, M. Lasagni, A. Luridiana, D. Pitea, G. Bestetti, Bioremediation of diethylhexyl phthalate contaminated soil: A feasibility study in slurry- and solid-phase reactors, Environ. Sci. Technol. 39 (2005).

DOI: 10.1021/es035420d

Google Scholar

[7] D. W. Liang, T. Zhang, H. H. P. Fang, Anaerobic degradation of dimethyl phthalate in wastewater in a UASB reactor, Water Res. 41 (2007) 2879–2884.

DOI: 10.1016/j.watres.2007.03.043

Google Scholar

[8] B. L. Yuan, X. Z. Li, N. Graham, Aqueous oxidation of dimethyl phthalate in a Fe(VI)-TiO2-UV reaction system, Water Res. 42 (2008) 1413–1420.

DOI: 10.1016/j.watres.2007.10.010

Google Scholar

[9] W. M. Zhang, Z. W. Xu, B. C. Pan, C. H. Hong, K. Jia, P. J. Jiang, Q. J. Zhang, B. J. Pan, Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents, J. Colloid Interface Sci. 325 (2008) 41–47.

DOI: 10.1016/j.jcis.2008.05.030

Google Scholar

[10] E. Álvarez-Ayuso, H. W. Nugteren, Purification of chromium(VI) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite, Water Res. 39 (2005) 2535–2542.

DOI: 10.1016/j.watres.2005.04.069

Google Scholar

[11] S. Vreysen, A. Maes, Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides, Appl. Clay Sci. 38 (2008) 237–249.

DOI: 10.1016/j.clay.2007.02.010

Google Scholar

[12] L. Lv, J. He, M. Wei, D. G. Evans, Z. L. Zhou, Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides: Kinetic and equilibrium studies, Water Res. 41 (2007) 1534–1542.

DOI: 10.1016/j.watres.2006.12.033

Google Scholar

[13] R. Liu, R. L. Frost, W. N. Martens, Absorption of the selenite anion from aqueous solutions by thermally activated layered double hydroxide, Water Res. 43 (2009) 1323–1329.

DOI: 10.1016/j.watres.2008.12.030

Google Scholar

[14] N. Adhoum, L. Monser, Removal of phthalate on modified activated carbon: Application to the treatment of industrial wastewater, Sep. Purif. Technol. 38 (2004) 233–239.

DOI: 10.1016/j.seppur.2003.11.011

Google Scholar

[15] S. V. Mohan, S. Shailaja, M. R. Krishna, P.N. Sarma, Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: A kinetic study, J. Hazard. Mater. 146 (2007) 278–282.

DOI: 10.1016/j.jhazmat.2006.12.020

Google Scholar

[16] K. Okawa, K. Suzuki, T. Takeshita, K. Nakano, Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation, Water Res. 41(2007).

DOI: 10.1016/j.watres.2006.10.032

Google Scholar

[17] J. Orthman, H. Y. Zhu, G. Q. Lu, Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions, Sep. Purif. Technol. 31 (2003) 53–59.

DOI: 10.1016/s1383-5866(02)00158-2

Google Scholar

[18] H. W. Olfs, L. O. Torres-Dorante, R. Eckelt, H. Kosslick, Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties, Appl. Clay Sci. 43 (2009).

DOI: 10.1016/j.clay.2008.10.009

Google Scholar

[19] M. S. Chiou, H. Y. Li, Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads, Chemosphere. 50 (2003) 1095–1105.

DOI: 10.1016/s0045-6535(02)00636-7

Google Scholar

[20] B. V. Oepen, W. Kördel, W. Klein, Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-Guideline 106, Chemosphere. 22 (1991) 285–304.

DOI: 10.1016/0045-6535(91)90318-8

Google Scholar

[21] R. N. Karingithia, C. L. Shawa, E. W. Roberts, P. A. Molina, The probability distribution function as a descriptor of hydrogen bond strength, J. Mol. Struc-Theochem. 851 (2008) 92–99.

DOI: 10.1016/j.theochem.2007.11.003

Google Scholar