[1]
European Commission, http: /ec. europa. eu/environment/pops/index _en. htm, updated on Jan. 15th (2011).
Google Scholar
[2]
X.Y. Han, Z.Y. Wang, Z.C. Zhai, and L.S. Wang, Estimation of n-octanol/water partition coefficients (Kow) of all PCB congeners by ab initio and a Cl substitution position method, QSAR Comb. Sci., vol. 25, p.333 – 341, (2006).
DOI: 10.1002/qsar.200530141
Google Scholar
[3]
B.G. Hansen, A.B. Paya-Perez, M. Rahman, and B.R. Larsen, QSARs for Kow and Koc of PCB congerners: a critical examination of data, assumptions and stastistical approaches, Chemosphere. vol. 39, pp.2209-2228, (1999).
DOI: 10.1016/s0045-6535(99)00145-9
Google Scholar
[4]
R. Zhou, L. Zhu, K. Yang, and Y.Y. Chen, Distribution of organochlorine, pesticides in surface water and sediments from Qiantang River, East China, J. Hazard. Mater., vol. 137, p.68–75, (2006).
DOI: 10.1016/j.jhazmat.2006.02.005
Google Scholar
[5]
J.R. Baker, J.R. Mihelcic, and A. Sabljic, Reliable QSAR for estimation Koc for persistent organic pollutans: correlation with molecular connetivity indices, Chemosphere, vol. 45, pp.213-221, (2001).
DOI: 10.1016/s0045-6535(00)00339-8
Google Scholar
[6]
V. Uddameri, and M. Kuchanur, Fuzzy QSARs for predicting log Koc of persistent organic pollutants, Chemosphere, vol. 54, p.771–776, (2004).
DOI: 10.1016/j.chemosphere.2003.08.023
Google Scholar
[7]
J.Y. Dai, S.K. Han, and L.S. Wang, Prediction of n-octanol/water partition coefficients and soil sorption coefficients for polychlorinated organic compounds (PCOCs) using quantum chemical parameters, Acta Sci. Circum., vol. 20, no. 6, pp.693-698, (2000).
Google Scholar
[8]
P. Wang, Q.H. Zhang, Y.W. Wang, T. Wang, X.M. Lia, L. Ding, and G.B. Jiang, Evaluation of soxhlet extraction, accelerated solvent extraction and microwave-assisted extraction for the determination of polychlorinated biphenyls and polybrominated diphenyl ethers in soil and fish samples, Anal. Chimi. Acta, vol. 663, pp.43-48, (2010).
DOI: 10.1016/j.aca.2010.01.035
Google Scholar
[9]
H.A. Martens, and P. Dardenne, Validation and verification of regression in small data sets, Chemometr. Intell. Lab. Syst., vol. 44, 99–121, (1998).
Google Scholar
[10]
M. Randic, The connectivity index 25 years after, J. Mole. Graph. Model., vol. 20, pp.19-35, (2001).
Google Scholar
[11]
L. Jiao, Gao S.Y., Z.H. Jia, and H. Li, Quantification of Benzoic Acid and Salicylic Acid by Capillary Zone Electrophoresis Combined with Artificial Neural Network, Comput. Appl. Chem., vol. 24, pp.1595-1599, (2007).
Google Scholar
[12]
Y. X Zhang, H. Li, A.X. Hou, and J. Havel, Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks,. Chemometr. Intell. Lab. Sys., vol. 82, pp.165-175, (2006).
DOI: 10.1016/j.chemolab.2005.08.012
Google Scholar
[13]
L. Jiao, and H. Li, QSPR studies on the aqueous solubility of PCDD/Fs by using artificial neural network combined with stepwise regression, Chemometr. Intell. Lab. Sys., vol. 103, pp.90-95, (2010).
DOI: 10.1016/j.chemolab.2010.05.019
Google Scholar
[14]
M. Jalali-Heravi, and Z. Garkani-Nejad, Prediction of electrophoretic mobilities of alkyl- and alkenylpyridines in capillary electrophoresis using artificial neural networks, J. Chromatogr. A, vol. 971, pp.207-215, (2002).
DOI: 10.1016/s0021-9673(02)01043-9
Google Scholar
[15]
Y.X. Zhang, H. Li, A. X. Hou, and J. Havel, Artificial neural networks based on genetic input selection for quantification in overlapped capillary electrophoresis peaks, Talanta, vol. 65, pp.118-128, (2005).
DOI: 10.1016/j.talanta.2004.05.050
Google Scholar
[16]
L. Jiao, QSPR studies on soot-water partition coefficients of persistent organic pollutants by using artificial neural network, Chemosphere, vol. 80, pp.671-675, (2010).
DOI: 10.1016/j.chemosphere.2010.04.013
Google Scholar
[17]
Y.J. Ye, D.X. Ding, X.Y. Li, X.H. Zhou, and Y. Tan, Application of BP-ANN in forecasting the equivalent radon exhalation rate of uranium ore-rock in the course of mine ventilation, Proceedings of Computational Intelligence and Software Engineering, Wuhan, China, 2009, pp.1-4.
DOI: 10.1109/cise.2009.5366769
Google Scholar