Thermodynamic and Kinetic Study on Lithium Bis(Oxalato)Borate Thermal Decomposition Reaction

Article Preview

Abstract:

.Reported accidents such as fire and explosion on account of lithium-ion batteries remind us it is important to understand the thermal stability of battery materials. Lithium salt plays an important role in the safety of lithium ion batteries. Thermal decomposition reaction of a lithium salt-lithium bis (oxalato) borate (LiBOB) was studied using C80 calorimeter under argon atmosphere. The samples were heated at a 0.2 K min-1 heating rate from ambient temperature to 573 K in single scanning rate experiments, or at different constant temperatures (528 K, 533 K, 538 K, 543 K) in isothermal experiments. The results show that LiBOB decomposes near 433 K, and its decomposition reaction order was calculated to be n=1.43. In addition, thermodynamic parameters and kinetic parameters were obtained. The reaction heat associated with LiBOB decomposition process is 197.33 J g-1, the activation energy and pre-exponential factor were calculated to be E=177.23 kJ mol-1 and A=6.51×106 s-1, respectively. Nomenclature

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

947-953

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yang, G. V. Zhuang, and P. N. Ross, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, Journal of Power Sources, vol. 161, pp.573-579, Oct 20 (2006).

DOI: 10.1016/j.jpowsour.2006.03.058

Google Scholar

[2] B. Ravdel, K. M. Abraham, R. Gitzendanner, J. DiCarlo, B. Lucht, and C. Campion, Thermal stability of lithium-ion battery electrolytes, Journal of Power Sources, vol. 119, pp.805-810, Jun 1 (2003).

DOI: 10.1016/s0378-7753(03)00257-x

Google Scholar

[3] Q. S. Wang, J. H. Sun, X. L. Yao, and C. H. Chen, Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries, Thermochimica Acta, vol. 437, pp.12-16, Oct 15 (2005).

DOI: 10.1016/j.tca.2005.06.010

Google Scholar

[4] Q. S. Wang, J. H. Sun, X. L. Yao, and C. H. Chen, Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes, Journal of Loss Prevention in the Process Industries, vol. 19, pp.561-569, Nov (2006).

DOI: 10.1016/j.jlp.2006.02.002

Google Scholar

[5] T. R. Jow, M. S. Ding, K. Xu, S. S. Zhang, J. L. Allen, K. Amine, and G. L. Henriksen, Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells, Journal of Power Sources, vol. 119, pp.343-348, Jun 1 (2003).

DOI: 10.1016/s0378-7753(03)00153-8

Google Scholar

[6] B. G. Nolan and S. H. Strauss, Nonaqueous lithium battery electrolytes based on bis(polyfluorodiolato)borates, Journal of the Electrochemical Society, vol. 150, pp. A1726-A1734, Dec (2003).

DOI: 10.1149/1.1627356

Google Scholar

[7] K. Xu, S. S. Zhang, B. A. Poese, and T. R. Jow, Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate, Electrochemical and Solid State Letters, vol. 5, pp. A259-A262, Nov (2002).

DOI: 10.1149/1.1510322

Google Scholar

[8] K. Xu, S. S. Zhang, T. R. Jow, W. Xu, and C. A. Angell, LiBOB as salt for lithium-ion batteries - A possible solution for high temperature operation, Electrochemical and Solid State Letters, vol. 5, pp. A26-A29, Jan (2002).

DOI: 10.1149/1.1426042

Google Scholar

[9] J. Jiang and J. R. Dahn, Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC, Electrochemical and Solid State Letters, vol. 6, pp. A180-A182, Sep (2003).

DOI: 10.1149/1.1592911

Google Scholar

[10] K. Xu, U. Lee, S. S. Zhang, and T. R. Jow, Graphite/electrolyte interface formed in LiBOB-based electrolytes - II. Potential dependence of surface chemistry on graphitic anodes, Journal of the Electrochemical Society, vol. 151, pp. A2106-A2112, (2004).

DOI: 10.1149/1.1812732

Google Scholar

[11] K. Xu, S. S. Zhang, and R. Jow, Electrochemical impedance study of graphite/electrolyte interface formed in LiBOB/PC electrolyte, Journal of Power Sources, vol. 143, pp.197-202, Apr 27 (2005).

DOI: 10.1016/j.jpowsour.2004.11.026

Google Scholar

[12] W. Xu and C. A. Angell, LiBOB and its derivatives weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions (vol 4, pg E1, 2001), Electrochemical and Solid State Letters, vol. 4, pp. L3-L3, Mar (2001).

DOI: 10.1149/1.1347858

Google Scholar

[13] K. Xu, U. Lee, S. S. Zhang, J. L. Allen, and T. R. Jow, Graphite/electrolyte interface formed in LiBOB-based electrolytes - I. Differentiating the roles of EC and LiBOB in SEI formation, Electrochemical and Solid State Letters, vol. 7, pp. A273-A277, (2004).

DOI: 10.1149/1.1774973

Google Scholar

[14] S. A. Wang, W. H. Qiu, Y. L. Guan, B. T. Yu, H. L. Zhao, and W. Liu, Electrochemical characteristics of LiMxFe1-xPO4 cathode with LiBOB based electrolytes, Electrochimica Acta, vol. 52, pp.4907-4910, Apr 20 (2007).

DOI: 10.1016/j.electacta.2007.01.052

Google Scholar

[15] E. Zinigrad, L. Larush-Asraf, G. Salitra, M. Sprecher, and D. Aurbach, On the thermal behavior of Li bis(oxalato)borate LiBOB, Thermochimica Acta, vol. 457, pp.64-69, Jun 15 (2007).

DOI: 10.1016/j.tca.2007.03.001

Google Scholar

[16] B. T. Yu, W. H. Qiu, F. S. Li, and G. X. Xu, The electrochemical characterization of lithium bis( oxalato) borate synthesized by a novel method, Electrochemical and Solid State Letters, vol. 9, pp. A1-A4, (2006).

DOI: 10.1149/1.2128122

Google Scholar