[1]
European Commission, http: /ec. europa. eu/environment/pops/index _en. htm, updated on Jan. 15th (2011).
Google Scholar
[2]
X.Y. Han, Z.Y. Wang, Z.C. Zhai, and L.S. Wang, Estimation of n-octanol/water partition coefficients (Kow) of all PCB congeners by ab initio and a Cl substitution position method, QSAR Comb. Sci., vol. 25, p.333 – 341, (2006).
DOI: 10.1002/qsar.200530141
Google Scholar
[3]
M.S. Petersen, J. Halling, P. Damkier, F. Nielsen ,P. Grandjean, P. Weihe, et al., Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults, Toxicol. Appl. Pharma., vol. 224, p.202–206, (2007).
DOI: 10.1016/j.taap.2007.07.002
Google Scholar
[4]
P. Rulle, The n-octanol and n-hexane/water partition coefficient of environmentally relevant chemicals predicted from the mobile order and disorder (MOD) thermodynamics, Chemosphere, vol. 40, pp.457-512, (2000).
DOI: 10.1016/s0045-6535(99)00268-4
Google Scholar
[5]
J. Padmanabhan, R. Parthasarathi, V. Subramaniana, and P.K. Chattaraj, QSPR models for polychlorinated biphenyls: n-octanol/water partition coefficient, Bioorg. Med. Chem., vol. 14, p.1021–1028, (2006).
DOI: 10.1016/j.bmc.2005.09.017
Google Scholar
[6]
D.R. Zhang, QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis, Comput. Chem., vol. 25, pp.197-204, (2001).
DOI: 10.1016/s0097-8485(00)00081-4
Google Scholar
[7]
P. Ruiza, O. Faroona, C.J. Moudgal, H. Hansena, C.T. De Rosa, and M. Mumtaz, Prediction of the health effects of polychlorinated biphenyls (PCBs) and their metabolites using quantitative structure–activity relationship (QSAR), , Toxicol. Lett., p.181, 53–65, (2008).
DOI: 10.1016/j.toxlet.2008.06.870
Google Scholar
[8]
E.S. Heimstada, and P.L. Andersson, Docking and QSAR studies of an indirect estrogenic effect of hydroxylated PCBs, Quant. Struct. -Act. Relat., vol. 21, pp.257-266, (2002).
DOI: 10.1002/1521-3838(200208)21:3<257::aid-qsar257>3.0.co;2-w
Google Scholar
[9]
H.H. Liu , X. Xiao, J. Qin, and Y.M. Liu, Study on structural characteristics and QSPR of polychlorinated biphenyls isomers (PCBs), J. Chongqing Institute of Technology, vol. 19, No. 5., pp.67-70, May, (2005).
Google Scholar
[10]
S.S. Liu, H.L. Liu, Z.N. Xia, C.Z. Cao, and Z.L. Li, Molecular distance-edge vector (μ): an extension from alkanes to alcohols, J. Chem. Inf. Comput. Sci., vol. 39. no. 6, pp.951-957, (1999).
DOI: 10.1021/ci990011f
Google Scholar
[11]
H.A. Martens, and P. Dardenne, Validation and verification of regression in small data sets., Chemometr. Intell. Lab. Syst., vol. 44, 99–121, (1998).
Google Scholar
[12]
L. Jiao, Gao S.Y., Z.H. Jia, and H. Li, Quantification of Benzoic Acid and Salicylic Acid by Capillary Zone Electrophoresis Combined with Artificial Neural Network, Comput. Appl. Chem., vol. 24, pp.1595-1599, (2007).
Google Scholar
[13]
Y. X Zhang, H. Li, A.X. Hou, and J. Havel, Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks,. Chemometr. Intell. Lab. Sys., vol. 82, pp.165-175, (2006).
DOI: 10.1016/j.chemolab.2005.08.012
Google Scholar
[14]
V. David, and A. Sanchez, Searching for a solution to the automatic RBF network design problem, Neurocomputing, vol. 42, pp.147-153, (2002).
DOI: 10.1016/s0925-2312(01)00600-2
Google Scholar
[15]
X.P. Guo, and Z.J. Wang, An Algorithm for Selecting RBF-ANN Centers of Species Mass in Engine, Computer Science and Information Engineering, 2009 WRI World Congress on, vol. 3, pp.40-42, (2009).
DOI: 10.1109/csie.2009.374
Google Scholar