[1]
M.S.H. Bader, Precipitation and separation of chloride and sulfate ions from aqueous solutions; basic experimental performance and modeling, Environ. Prog., vol. 17, no. 2, pp.126-135, (1998).
DOI: 10.1002/ep.670170220
Google Scholar
[2]
D.J.W. Grant, and T. Higuchi, Solubility Behavior of Origanic Compounds, Techniques of Chemistry, Vol. 21; Wiley: New Yorl, (1990).
Google Scholar
[3]
H. Stephen, T. Stephen, Solubilities of Inorganic and Organic Compounds: Binary Systems, Pergamon Press: Oxford, England, (1963).
Google Scholar
[4]
H. Stephen, T. Stephen, Solubilities of Inorganic and Organic Compounds: Ternary Systems;, Pergamon Press: Oxford, England, (1964).
Google Scholar
[5]
W. F. Linke, A. Seidell, Solubilities of Inorganic and Metal-Organic Compounds, 4th ed.; American Chemical Society: Washington, DC, (1958).
Google Scholar
[6]
W. F. Linke, A. Seidell, Solubilities of Inorganic and Metal-Organic Compounds, 4th ed.; American Chemical Society: Washington, DC, (1965).
Google Scholar
[7]
K. Wagner, T. Friese, S. Schulz, P. Ulbig, Solubilities of Sodium Chloride in Organic and Aqueous-Organic Solvent Mixtures, J. Chem. Eng. Data, vol. 43, no. 5, pp.871-875, (1998).
DOI: 10.1021/je9800510
Google Scholar
[8]
J. -D. Li, H. M. Polka, J. Gmehling, A gE model for single and mixed solvent electrolyte systems 1. Model and results for strong electrolytes, Fluid Phase Equilib., vol. 94, pp.89-114, March (1994).
DOI: 10.1016/0378-3812(94)87052-7
Google Scholar
[9]
H. M. Polka, J. -D. Li, J. Gmehling A gE model for single and mixed solvent electrolyte systems 2. Results and comparison with other models, Fluid Phase Equilib., vol. 94, pp.115-127, March (1994).
DOI: 10.1016/0378-3812(94)87053-5
Google Scholar
[10]
Z. -W. Wang, Q. -X. Sun, J. -S. Wu, L. -S. Wang, Solubilities of 2-carboxyethyl-phenylphosphinic acid and 4-carboxyphenylphenylphinic acid in water, J. Chem. Eng. Data, vol. 48, no. 4, p.1073–1075, (2003).
Google Scholar
[11]
L. -S. Wang, Y. Liu, R. Wang, Solubilities of some phosphaspirocyclic compounds in selected solvents, J. Chem. Eng. Data, vol. 51, no. 5, p.1686– 1689, (2006).
DOI: 10.1021/je060138i
Google Scholar
[12]
W. -D. Yan, M. Topphoff, C. Rose, and J. Gmehling, Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept, Fluid Phase Equilib., vol. 162, pp.97-113, August (1999).
DOI: 10.1016/s0378-3812(99)00201-0
Google Scholar
[13]
J. -D. Li, Y . Li, J. Lu, and T. Teng, A New Molecular Thermodynamic Model and Its Applications (Ⅱ) The Application to Metal Solvent Systems, J. Chem. Ind. Eng. (in Chinese), vol. 1, no, 1, pp.66-73, (1990).
Google Scholar
[14]
H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, J. Gmehling, Vapor-Liquid Equilibria by UNIFAC Group Contribution. 5. Revision and Extension, Ind. Eng. Chem. Res., vol. 30, no. 10, pp.2352-2355, (1991).
DOI: 10.1021/ie00058a017
Google Scholar
[15]
J. Kiepe, O. Noll, and J. Gmehling; Modified LIQUAC and Modified LIFAC A Further Development of Electrolyte Models for the Reliable Prediction of Phase Equilibria with Strong Electrolytes, Ind. Eng. Chem. Res., vol. 45, no. 7, pp.2361-2373, (2006).
DOI: 10.1021/ie0510122
Google Scholar