[1]
Y. Cha and S. Kim. Edge-Forming Methods for Image Zooming, J Math Imaging Vis. (2006) no. 25, p.353.
DOI: 10.1007/s10851-006-7250-2
Google Scholar
[2]
F. Guichard and F. Malgouyres. Total variation based interpolation, Proceeding of the European Signal Processing Conference. (Island of Rhodes, Greece, Sept. 8-11, 1998), no. 3, p.1741.
Google Scholar
[3]
F. Guichard and F. Malgouyres. Edge direction preserving image zooming: a mathematical and numerical analysis, SIAM Journal of Numerical Analysis. Vol. 39, (2001) no. 1, p.1.
DOI: 10.1137/s0036142999362286
Google Scholar
[4]
A. Chambolle. An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision. Vol. 20(2004) no. (1-2), p.89.
Google Scholar
[5]
R. A. DeVore. Nonlinear approximation, Acta Numerica, vol 7, (1998) p.51.
Google Scholar
[6]
S. Osher, A. Sole, and L. Vese. Image decomposition and restoration using total variation minimization and the norm, Tech. Rep. 02-57, University of California Los Angeles C.A.M. (2002).
DOI: 10.1109/icip.2003.1247055
Google Scholar
[7]
L. Vese and S. Osher. Image denoising and decomposition with total variation minimization and oscillatory functions, Journal of Mathematical Imaging and Vision, (2004) no. 20, p.7.
DOI: 10.1023/b:jmiv.0000011316.54027.6a
Google Scholar
[8]
I. Daubechies and G. Teschke. Wavelet based image decomposition by variational functionals, Proceedings of SPIE Volume: 5266, Wavelet Applications in Industrial Processing. Editor(s): Frederic Truchetet, Feb (2004) p.94.
DOI: 10.1117/12.516051
Google Scholar
[9]
I. Daubechies and G. Teschkeb. Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising, Appl. Comput. Harmon. Anal. Vol. 19(2005) no. 1, p.1.
DOI: 10.1016/j.acha.2004.12.004
Google Scholar
[10]
Linh Lieu and L. Vese. Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces, Appl Math Optim. vol. 58(2008) no. 2, p.167.
DOI: 10.1007/s00245-008-9047-8
Google Scholar
[11]
A. L. Dirk. Solving variational problems in image processing via projections-A common view on TV denoising and wavelet shrinkage, University of Bremen, Preprint No. 52 of the DFG Schwerpunkt- programm 1114, (2004), no. 3.
DOI: 10.1002/zamm.200610300
Google Scholar
[12]
Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, (Providence: American Mathematical Society 2001).
Google Scholar