Effect of Repeated Quenching on the Rotating Bending Strength of SAE52100 Bearing Steel

Article Preview

Abstract:

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance are required. Due to its high fatigue strength, SAE 52100 is recently being used not only for the production of bearings but also shafts. Refining of prior austenite grain through repeated quenching is a procedure that can be used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched SAE 52100 steel and its fatigue strength under rotating bending were investigated. It was found that repeated furnace heating and quenching effectively refined the martensitic structure and increased the retained austenite content. Repeated quenching was found to improve the fatigue strength of SAE 52100.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

1025-1031

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. F. Madayag: Metal Fatigue Theory and Desigen (John Wiley & Sons Inc., USA, 1969).

Google Scholar

[2] W. D. Syniutaa, C. J. Corrowa: Wear, Vol. 15, No. 3 (1970), pp.171-186.

Google Scholar

[3] Y. Murakami, Effects of Small Defects and Nonmetallic Inclusions (Elsever Science Ltd., UK, 2002).

Google Scholar

[4] T. Furukawa, S. Onuma and K. Hosogai: Tetsu- to- Hagane, Vol. 72, No. 1 (1986), pp.62-69, (in Japanese).

Google Scholar

[5] K. Shiozawa, L. Tao and S. Ishihara: JSMS Vol. 48, No. 10 (1999), pp.1095-1100, (in Japanese).

Google Scholar

[6] N. Oguma, H. Harada and T. Sakai: JSMS, Vol. 52, No. 11 (2003), pp.1292-1297, (in Japanese).

Google Scholar

[7] M. Nakajima, N. Kajiyama, M. Itoga, K. Tokaji and H. Ko: JSME Vol. 70, No. 699 (2004), pp.1636-1642, (in Japanese).

Google Scholar

[8] R. A. Grange: Metall. Trans., Vol. 2 (1971), pp.65-78.

Google Scholar

[9] T. Tamatani, M. Iguchi, T. Sato and K. Tsubota: Netsusyori, Vol. 37, No. 6 (1997), pp.356-361, (in Japanese).

Google Scholar

[10] S. Bozo: Journal of Materials Processing Technology, Vol. 155, No. 156 (2004), pp.1704-1707.

Google Scholar

[11] T. Hijikata, T. Yamazaki and K. Fujita, U.S. Patent 4, 222, 799. (1980).

Google Scholar

[12] K. Kawasaki: JSHT, Vol. 46, No. 3 (2006), pp.123-130, (in Japanese).

Google Scholar

[13] M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki and I. Tamura, Metall Tran A, Vol. 13 (1982), pp.1379-1388.

Google Scholar

[14] M. Nishikawa, K. Hiraoka: Sanyo Technical Report, Vol. 14, No. 1 (2007), pp.42-49, (in Japanese).

Google Scholar

[15] H. Sakai, S. Ochiai and M. Ueno: ISIJ, Vol. 75 (1989), pp.657-664, (in Japanese).

Google Scholar

[16] H. Koike, E. C. Santos, K. Kida, T. Honda and J. Rozwadowska: AMR, Vols. 217-218(2011), pp.1266-1271. doi: 10. 4028/www. scientific. net/AMR. 217-218. 1266.

DOI: 10.4028/www.scientific.net/amr.217-218.1266

Google Scholar

[17] E. C. Santos, K. Kida, T. Honda and J. Rozwadowska, K. Houri and K. Hashimoto: AMR, Vols. 217-218(2011), pp.982-987. doi: 10. 4028/www. scientific. net/AMR. 217-218. 982.

DOI: 10.4028/www.scientific.net/amr.217-218.982

Google Scholar