Dielectric Relaxation Studies of the Fast Lithium-Ion Conductor La2/3-xLi3xTiO3 (x=0.06, 0.11)

Article Preview

Abstract:

The diffusion processes of lithium ions in La2/3-xLi3xTiO3 (x=0.06, 0.11) compounds were investigated by dielectric relaxation method. Prominent relaxation dielectric loss peaks, peaks P1 and P2 in La0.56Li0.33TiO3 and peaks P3 and P4 in La0.61Li0.18 TiO3, were observed. From the shift of peak position with frequency, the activation energy of 0.36~0.42 eV and the pre-exponential factor of relaxation time in the order of 10-14 ~ 10-13 s were obtained if one assumes Debye relaxation processes. The activation energies of lithium ion diffusion in La2/3-xLi3xTiO3 compounds and the characteristic vibration frequency for the ionic hopping motion are higher than those measured by 7Li nuclear magnetic resonance (NMR) spectroscopy and that of the typical phonon frequency (about 1013Hz). These values of relaxation parameters strongly suggest the existence of interaction between the relaxation species (here lithium ions or vacancies). Basing on the coupling model, the decoupled relaxation parameters of the dielectric relaxation peaks is: P1 (0.14 eV, 2×10-13 s), P2 (0.25 eV, 1.8×10-13 s), P3 (0.17 eV, 4×10-13 s) and P4 (0.3 eV, 2.7×10-13 s). These decoupled parameters are very close to the NMR measurement results and the reciprocal of the typical phonon frequency. Judging from the relaxation parameter of the peaks and combining with the crystallographic characterization, it is suggested that the P1 (P3) and P2 (P4) peaks are associated with the lithium ion diffusion in the ab planes and between the adjacent ab planes, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

1019-1024

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y Inaguma, L Chen, M Itoh, T Nakamura, T Uchida, H Ikuta and M.Wakihara. Solid State Commun. Vol.86 (1993),p.689

DOI: 10.1016/0038-1098(93)90841-a

Google Scholar

[2] A.D. Robertson, S. G. Martin, A. Coats, A.R. West, J Mater Chem. Vol.5 (1995),p.1405

Google Scholar

[3] J. Rodrguez-Carvajal, Physica (Amsterdam) Vol.192B (1993),p.55

Google Scholar

[4] S. Stramare, V. Thangadurai, and W. Weppner, Chem. Mater. Vol.15(2003),p.3974

Google Scholar

[5] Q. F. Fang, X. P. Wang, G. G. Zhang, , phys. stat. sol. (a) Vol.202 (2005), p.1041

Google Scholar

[6] J. Emery, O. Bohnké, J. L. Fourquet, J. Y. Buzaré, P. Florian and D. Massiot, J.Phys.:Condens.Matter Vol.14(2002),p.523

Google Scholar

[7] W. G. Wang, X. P. Wang, Y. X. Gao, and Q. F. Fang, Solid State Ionics Vol.180(2009), p.1252

Google Scholar

[8] K. L. Ngai, A. K. Jonscher, and C. T. White, Nature. Vol.277(1979),p.185

Google Scholar

[9] Y. N. Wang, M. Gu, L. H. Sun, and K. L. Ngai, Phys. Rev. B Vol.50 (1994),p.3525

Google Scholar

[10] Y. Shi, W. B. Jiang, Q. P. Kong, P. Cui, Q. F. Fang, and M. Winning, Phys. Rev. B Vol.73 (2006),p.174101

Google Scholar

[11] Q. F. Fang, X. P. Wang, G. G. Zhang, phys. stat. sol. (a) Vol.202 (2005),p.1041

Google Scholar

[12] Y. Shi, W. B. Jiang, Q. P. Kong, P. Cui, Q. F. Fang, Phys. Rev. B Vol.73 (2006),p.174101

Google Scholar

[13] M. A. París and J. Sanz, Chem. Mater. Vol.12(2000),p.1694

Google Scholar

[14] D. Mazza, S. Ronchetti, O. Bohnké, H. Duroy, Solid State Ionics Vol.149 (2002),p.81

Google Scholar

[15] M. Yashima, M. Itoh, Y. Inaguma and Y. Morii, J. Am. Chem. Soc. Vol.126(2004),p.3491

Google Scholar

[16] A. Pivera, C. Leόn, J. Santamaría, A. Várez, O. V'yunov, A. G. Belous, J. A. Alonso, and J. Sanz, Chem. Mater. Vol.14(2002),p.5148

Google Scholar