Preparation and Characterization of Fibrous Hydroxyapatite/Chitosan Nanocomposites with High Hydroxyapatite Dosage

Article Preview

Abstract:

In this paper the hydroxyapatite fibers reinforced chitosan nanocomposites with high hydroxyapatite dosage (70~90 wt%) were synthesized by in-situ hybridization. The semi-permeable membrane was used to control the process of hybridization and morphology of hydroxyapatite. The compositional and morphological properties of nanocomposites were investigated by FTIR spectroscopy, X-ray diffraction, and transmission electron microscopy. The results showed that the hydroxyapatite were carbonated nanometer crystalline fibers with high aspect ratio (about 25) and dispersed uniformly in the nanocomposites. The high-resolution image indicated that the growth of nano-hydroxyapatite crystallites in the chitosan matrix preferred in the c-axis. The mechanical properties of these nanocomposites were enhanced dramatically and the compressive strength increases almost to 170MPa when the hydroxyapatite content is 70 wt%. The in vitro tests indicated that the composites have high bioactivity and degradation. These properties illustrated the potential application of this kind of nanocomposites for bone tissue engineering.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

365-371

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.R. Constantz, I.C. Ison, M.T. Fulmer, R.D. Poser, S.T. Smith, M. van Wagoner, J. Ross, S.A. Goldstein, J.B. Jupiter, D.I. Rosenthal, Skeletal repair by in situ formation of the mineral phase of bone, Science. 267(1995) 1796-1799.

DOI: 10.1126/science.7892603

Google Scholar

[2] M. Sundfeldt, L.V. Carlsson, C.B. Joansson, P. Thomsen, C. Gretzer, Aseptic loosening, not only a question of wear: a review of different theories, Acta. Orthop. 77 (2006) 177-179.

DOI: 10.1080/17453670610045902

Google Scholar

[3] A.J. Tonino, B.C.H. van der Wal, I.C. Heyligers, B. Grimm, Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses, Clin. Orthop. Relat. Res. 467 (2009) 478-484.

DOI: 10.1007/s11999-008-0559-y

Google Scholar

[4] J. Jordan, K.I. Jacop, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites-a review, Mater. Sci. Eng A. 393 (2005) 1-11.

Google Scholar

[5] A. Adnan, C.T. Sun and H. Mahfuz, A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites, Compos. Sci. Technol. 67 (2007) 348-356.

DOI: 10.1016/j.compscitech.2006.09.015

Google Scholar

[6] M.R. Rogel, H. Qiu, G.A. Ameer, The role of nanocomposites in bone regeneration, J. Mater. Chem. 18(2008) 4233-4241.

DOI: 10.1039/b804692a

Google Scholar

[7] P.A. Tran, L. Sarin, R.H. Hurt, T.J. Webster, Opportunities for nanotechnology-enabled bioactive bone implants J. Mater. Chem. 19(2009) 2653-2659.

DOI: 10.1039/b814334j

Google Scholar

[8] Z. Ahmad, J. E Mark, Biomimetic materials: recent developments in organic–inorganic hybrids, Mater. Sci. Eng C. 6(1998) 183-196.

Google Scholar

[9] M.N. Kumar, R.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev. 104(2004) 6017-6084.

DOI: 10.1021/cr030441b

Google Scholar

[10] J.J. Grodzinski, Biomedical applications of functional polymers, React. Function. Polym. 39(1999) 99-138.

Google Scholar

[11] R. Murugan, S. Ramakrishna, In-situ formation of recombinant humanlike collagen-hydroxyapatite nanohybrid through bionic approach, Appl. Phys. Lett. 88 (2006) 193124-193127.

DOI: 10.1063/1.2202138

Google Scholar

[12] X. Lu, Y.B. Wang, Y.R. Liu, J.X. Wang, S.X. Qu, B. Feng, J. Weng, Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol-gel techniques, Mater. Lett. 61 (2007) 3970-3973.

DOI: 10.1016/j.matlet.2006.12.089

Google Scholar

[13] J. Brugnerotto, J. Lizardi, F.M. Goycoolea, W. Arguelles-Monal, J. Desbrieres, M. Rinaudo, An infrared investigation in relation with chitin and chitosan characterization, Polymer. 42 (2001) 3569-3580.

DOI: 10.1016/s0032-3861(00)00713-8

Google Scholar

[14] G. Falini, S. Weiner, L. Addadi, Chitin-silk fibroin interactions: Relevance to calcium carbonate formation in invertebrates, Calcif. Tissue. Int. 72 (2003) 548-554.

DOI: 10.1007/s00223-002-1055-0

Google Scholar

[15] G. Penel, G. Leroy, C. Rey, B. Sombret, J.P. Huvenne, E. Bres, Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders, J. Mater. Sci. Mater. Med. 8 (1997) 271-276.

DOI: 10.1023/a:1018504126866

Google Scholar

[16] I. Rehman, W. Bonfield, Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy, J. Mater. Sci. Mater. Med. 8(1997) 1-4.

Google Scholar

[17] I. Yamaguchi, K. Tokuchi, H. Fukuzaki, Y. Koyama, K. Takakuda, H. Monma, J. Tana-ka. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res A. 55 (2001) 20-27.

DOI: 10.1002/1097-4636(200104)55:1<20::aid-jbm30>3.0.co;2-f

Google Scholar

[18] Powder Diffraction File #9-432, International Centre of Diffraction Data (ICDD), Newton Square, PA, USA.

Google Scholar

[19] Q.L. Hu, B.Q. Li, M. Wang, J.C. Shen, Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in-situ hybridization: a potential material as internal fixation of bone fracture, Biomaterials. 25(2004).

DOI: 10.1016/s0142-9612(03)00582-9

Google Scholar

[20] M.G. Ma, Y.J. Zhu, J. Chang, Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite, J. Phys. Chem B. 110 (2006) 14226-14230.

DOI: 10.1021/jp061738r

Google Scholar

[21] G.S. Sailaja, S. Velayudhan, M.C. Sunny, K. Sreenivasan, H.K. Varma, P. Ramesh, Hydroxyapatite filled chitosan-polyacrylic acid polyelectrolyte complexes, J. Mater. Sci. 38 (2003) 3653-3662.

DOI: 10.1023/a:1025689701309

Google Scholar

[22] X.H. Wang, J.B. Ma, Y.N. Wang, B.L. He, Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements, Biomaterials. 22 (2001) 2247-2255.

DOI: 10.1016/s0142-9612(00)00413-0

Google Scholar

[23] J. Park, R. Lakes, Biomaterials-An Introduction, 2nd ed, Plenum Press, New York, (1992).

Google Scholar

[24] K. Hirotak, Biomed. Mater. Res. Far. East (I), Kyoto, Kobunshi Kankokai Inc, 1993, p.35.

Google Scholar