A No Interference Optical Image Encryption by a Fresnel Diffraction and a Fourier Transformation

Article Preview

Abstract:

A no interference optical image encryption is put forward in this paper. The encrypting process is composed of a Fresnel diffraction and a Fourier transformation. A digital image coded with a random phase plate first takes a Fresnel diffraction. The diffraction function is enlarged and coded with another random phase mask. At last the enlarged function undergoes a Fourier transformation. The real part of the transformed function is defined as an encrypted image. In decrypting process, first the encrypted image takes an inverse Fourier transformation. Then the upper left corner of the transformed function is intercepted. According to the space inversion of the transformed function, if the intercepted function takes an inverse Fresnel diffraction, the original digital image can be restored from the final diffraction function. Because there is no interference process in encryption and decryption, the optical system is relatively simple and the quality of restored image is very good

You might also be interested in these eBooks

Info:

Periodical:

Pages:

461-464

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Refregier, P., Javidi, B. : Optical Image Encryption Based on Input Plane and Fourier Plane Random Encoding. Opt. Lett. 20(7), 767-769(1995).

DOI: 10.1364/ol.20.000767

Google Scholar

[2] Matoba,O., Nomura, T. , Perez-Cabre, E. , Millan, M. Í. S., Javidi, B. : Optical Techniques for Information Security. Proc. IEEE 97(6), 1128-1148 (2009).

DOI: 10.1109/jproc.2009.2018367

Google Scholar

[3] Singh, N., Sinha, A.: Gyrator Transform-based Optical Image Encryption Using Chaos. Opt. Lasers Eng. 47(5), 539-546 (2009).

DOI: 10.1016/j.optlaseng.2008.10.013

Google Scholar

[4] He, M. , Tan, Q., Cao, L., He, Q., Jin, G. : Security Enhanced Optical Encryption System by Random Phase Key and Permutation Key. Opt. Express 17(25), 22462-22473 (2009).

DOI: 10.1364/oe.17.022462

Google Scholar

[5] Carnicer, A., Montes-Usategui, M. , Arcos, S. , Juvells, I. : Vulnerability to Chosen-cyphertext Attacks of Optical Encryption Schemes Based on Double Random Phase Keys. Opt. Lett. 30(13), 1644-1646 (2005).

DOI: 10.1364/ol.30.001644

Google Scholar

[6] Naughton, T. J., Hennelly, B. M., Dowling, T. , Introducing Secure Modes of Operation for Optical Encryption. J. Opt. Soc. Am. A 25(10), 2608-2617 (2008).

DOI: 10.1364/josaa.25.002608

Google Scholar

[7] Chen, W., Chen, X., Colin, J. R., Sheppard, C. J. R.: Optical Image Encryption Based on Diffractive Imaging. Opt. Lett. 35, 3817-3819(2010).

DOI: 10.1364/ol.35.003817

Google Scholar

[8] Chen, W., Chen, X.: Space-based Optical Image Encryption. Opt. Express 18, 27095-27104(2010).

DOI: 10.1364/oe.18.027095

Google Scholar

[9] Ping, L., Rong, L., Sen, C. H.: The Real-value Encryption for the Full Phase Image. Laser Joural (in chinese) 25(2), 37-38(2004).

Google Scholar

[10] Rong, L., Ping, L.: Optical Image Security Based on Random Phase Real-value Encryption. Acta Photonica Sinica (in chinese) 33(5), 605-608(2004).

Google Scholar

[11] Gaohai, S. T., Jingjuan, Z.: Double Random-phase Encoding in the Fresnel Domain. Opt. Lett. 29(14), 1854-1856(2004).

Google Scholar

[12] Chen, L. F., Zhao, D.: Optical Color Image Encryption by Wavelength Multiplexing and Lensless Fresnel Transform Holograms. Opt. Express 14, 8552-8560(2006).

DOI: 10.1364/oe.14.008552

Google Scholar

[13] Shi, Y. S., Si-Tu, G.H., Zhang, J.J.: Multiple-image Hiding by Information Prechoosing. Opt. Lett. 33(6), 542-544(2008).

DOI: 10.1364/ol.33.000542

Google Scholar