Iris Feature Extraction and Matching Based on Space Pyramid

Article Preview

Abstract:

Iris feature extraction and classifier design are the key steps in iris recognition system, because it will directly affect the effect of iris recognition, especially for real-time iris recognition system, in order to extract enough information as possible while reducing the system Calculation, and find a balance between effectiveness and efficiency in the identification. the current proposed Gobor Dougman filtering is the main feature extraction. However, in the kinds of embedded systems, Gobor function need large amount of calculation, so this chapter put the pyramid matching classification in scenes into feature extraction, established a new model of feature extraction and recognition. The match effect is ideal in after large number of tests

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] MA L., TAN T., WANG Y.: Personal identification based on iris texture analysis [J]. IEEE TRANS. Pattern Analysis and Machine Intelligence, 2003, 25 (12): 1519-1533.

DOI: 10.1109/tpami.2003.1251145

Google Scholar

[2] PAN L., XIE M., MA Z. Iris localization based on multi-resolution analysis: International Conf. on Pattern Recognition [C]. (2008).

DOI: 10.1109/icpr.2008.4761844

Google Scholar

[3] HUANG J., WANG Y., TAN T. A new iris segmentation method for recognition: International Conf. on Pattern Recognition [C]. 2004: 554—557.

Google Scholar

[4] MA L., TAN T., WANG Y.: Efficient iris recognition by characterizing key local variations [J]. IEEE TRANS. Image Processing, 2004, 13 (6): 739—750.

DOI: 10.1109/tip.2004.827237

Google Scholar

[5] BOLE W., BOASHASH B.: A human identification technique using images of the iris and wavelet transform [J]. IEEE Tran. on Signal Processing, 1998, 46 (4): 1185—1188.

DOI: 10.1109/78.668573

Google Scholar

[6] PASSI A., KUMAR A. Improving iris identification using user quality and cohort information: IEEE Conf. on CVPR [C]. (2007).

DOI: 10.1109/cvpr.2007.383389

Google Scholar

[7] DAUGMAN, J.: High confidence visual recognition of persons by a test of statistical independence [J]. IEEE TRANS. Pattern Analysis and Machine Intelligence, 1993, 15 (11): 1148—1161.

DOI: 10.1109/34.244676

Google Scholar

[8] R. P. WILDES., Iris recognition: an emerging biometric technology, Proc. IEEE, vol. 85 1997 1348 - 1363.

DOI: 10.1109/5.628669

Google Scholar

[9] MA Z., ZHENG T., PAN L. Classification-based algorithms for iris outer edge location: IEEE Conf. on ICCCAS [C]. 2009 493—496.

Google Scholar

[10] LAZEBNIK S, SCHMID C., Ponce J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories: IEEE Conf. on CVPR [C]. (2006).

DOI: 10.1109/cvpr.2006.68

Google Scholar

[11] OZUYSAL M., FUA P., LEPETIT V. Fast keypoint recognition in ten lines of code: IEEE Conf. on CVPR [C]. (2007).

DOI: 10.1109/cvpr.2007.383123

Google Scholar

[12] OZUYSAL M., CALONDER M., LEPETIT V.: Fast keypoint recognition using random ferns. IEEE TRANS. Pattern Analysis and Machine Intelligence, 2010, 32 (3): 448—461.

DOI: 10.1109/tpami.2009.23

Google Scholar