[1]
KE Yangchuan. Polymer - inorganic Nanocomposites [M]. Peking: Chemical Industry Press, (2002).
Google Scholar
[2]
Shi Dongli. The Mechanical Properties of Carbon Nanotubes and Their Composites [D]. PhD thesis. Peking: Tsinghua University.
Google Scholar
[3]
Liu Wingkam. Nano Mechanics and Materials: Theories, Multiscale Methods and Applications [M]. Peking: Science Press, (2007).
Google Scholar
[4]
Lordi V, Yao N. Molecular mechanics of binding in carbon nanotube–polymer composites [J]. Mater Res . 2000, 15(12): 2770–9.
DOI: 10.1557/jmr.2000.0396
Google Scholar
[5]
Xu R L, Sengupta S. Interfacial stress transfer and property mismatch in discontinuous nanofiber/nanotube composite materials[J]. Nanoscience and Nanotechnology . 2005, 5(5): 1–6.
DOI: 10.1166/jnn.2005.077
Google Scholar
[6]
Karimzadeh F, Ziaei-Rad S, Adibi S. Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite[J]. Metallurgical and Materials Transaction B. 2007; 38(4): 695–705.
DOI: 10.1007/s11663-007-9065-y
Google Scholar
[7]
Gawand AA, Whitney JM, Brockman RB, Tandon GP. Interaction between a nanofiber and an arbitrarily oriented crack[J]. Composite materials . 2008, 42(1): 45–68.
DOI: 10.1177/0021998307086195
Google Scholar
[8]
Liu YJ, Xu N, Luo JF. Modeling of interphases in fiber-reinforced composites unde transverse loading using the boundary element method[J]. Transaction of the ASME . 2000, 67(1): 41–49.
DOI: 10.1115/1.321150
Google Scholar
[9]
Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proceedings the Royal Society A . 1957, 241(1226): 376-396.
DOI: 10.1098/rspa.1957.0133
Google Scholar
[10]
Eshelby J.D. The elastic field outside an ellipsoidal inclusion[J]. Mechanics of Materials 1959. 252(1271): 561-596.
Google Scholar
[11]
Mura T. Micromechanic of defects in solids [M]. Springer. (1987).
Google Scholar
[12]
HL Duan. A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework [J], Mechanics of Materials . 2007, 39: 81-93.
DOI: 10.1016/j.mechmat.2006.02.009
Google Scholar
[13]
Rémi Dingreville, Jianmin Qu, Mohammed Cherkaoui. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films[J]. The Mechanics and Physics of Solids. 2005, 53(8). 1827-1854.
DOI: 10.1016/j.jmps.2005.02.012
Google Scholar
[14]
Zhu LL, Zheng XJ. Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline materials[J]. ACTA Mechanica. 2010, 213(3-4). 223-234.
DOI: 10.1007/s00707-009-0263-3
Google Scholar
[15]
P. Sharma,S. Ganti. Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies[J]. Transaction of the ASME . 2004, 71. 663-671.
DOI: 10.1115/1.1781177
Google Scholar
[16]
Shen Guanlin, Hu Gengkai. Mechanics of Composite [M]. Peking: Tsinghua University Press, (2006).
Google Scholar
[17]
Wu Jialong. Elasticity [M]. Peking: Higher Education Press, (2008).
Google Scholar
[18]
Lu Mingwan, Luo Xuefu. Foundations of Elasticity [M]. Peking: Tsinghua University Press, (2001).
Google Scholar
[19]
Zhang Weimin. The Research on the Equivalent Viscoelastic Continuum Micromechanics for Polymer Based Nanocomposites [D]. PhD thesis. Hunan: Xiangtan University, (2006).
Google Scholar
[20]
Zhao Jun, Liu Jingye. Foundations of Nanomechanics — From Solid-State Theory to Device Applications [M]. Peking: Chemical Industry Press, (2007).
Google Scholar