Prediction of the Effective Elastic Moduli of the Nanoparticle-Reinforced Polymer Matrix Composites Considering Interface Effects

Article Preview

Abstract:

Based on the analysis of the interaction of the nano-particles and the matrix interface layer, assuming when the elastic properties of the interface layer change the total energy difference arising from it transfer to the nanoparticle surface, the effective elastic moduli of the nanoparticles with interface equilibrium can be obtained. Using the traditional continuum micromechanics approach, the effective modulus tensor and effective elastic moduli of spherical nanoparticles reinforced polymer matrix composite considering the interface layer effects of nanoparticles – matrix is predicted, and the effects of the volume fraction (mass fraction), the average particle size of nanoparticles and interface layer structural parameters and elastic properties to effective elastic moduli of composite materials is discussed

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-118

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] KE Yangchuan. Polymer - inorganic Nanocomposites [M]. Peking: Chemical Industry Press, (2002).

Google Scholar

[2] Shi Dongli. The Mechanical Properties of Carbon Nanotubes and Their Composites [D]. PhD thesis. Peking: Tsinghua University.

Google Scholar

[3] Liu Wingkam. Nano Mechanics and Materials: Theories, Multiscale Methods and Applications [M]. Peking: Science Press, (2007).

Google Scholar

[4] Lordi V, Yao N. Molecular mechanics of binding in carbon nanotube–polymer composites [J]. Mater Res . 2000, 15(12): 2770–9.

DOI: 10.1557/jmr.2000.0396

Google Scholar

[5] Xu R L, Sengupta S. Interfacial stress transfer and property mismatch in discontinuous nanofiber/nanotube composite materials[J]. Nanoscience and Nanotechnology . 2005, 5(5): 1–6.

DOI: 10.1166/jnn.2005.077

Google Scholar

[6] Karimzadeh F, Ziaei-Rad S, Adibi S. Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite[J]. Metallurgical and Materials Transaction B. 2007; 38(4): 695–705.

DOI: 10.1007/s11663-007-9065-y

Google Scholar

[7] Gawand AA, Whitney JM, Brockman RB, Tandon GP. Interaction between a nanofiber and an arbitrarily oriented crack[J]. Composite materials . 2008, 42(1): 45–68.

DOI: 10.1177/0021998307086195

Google Scholar

[8] Liu YJ, Xu N, Luo JF. Modeling of interphases in fiber-reinforced composites unde transverse loading using the boundary element method[J]. Transaction of the ASME . 2000, 67(1): 41–49.

DOI: 10.1115/1.321150

Google Scholar

[9] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proceedings the Royal Society A . 1957, 241(1226): 376-396.

DOI: 10.1098/rspa.1957.0133

Google Scholar

[10] Eshelby J.D. The elastic field outside an ellipsoidal inclusion[J]. Mechanics of Materials 1959. 252(1271): 561-596.

Google Scholar

[11] Mura T. Micromechanic of defects in solids [M]. Springer. (1987).

Google Scholar

[12] HL Duan. A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework [J], Mechanics of Materials . 2007, 39: 81-93.

DOI: 10.1016/j.mechmat.2006.02.009

Google Scholar

[13] Rémi Dingreville, Jianmin Qu, Mohammed Cherkaoui. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films[J]. The Mechanics and Physics of Solids. 2005, 53(8). 1827-1854.

DOI: 10.1016/j.jmps.2005.02.012

Google Scholar

[14] Zhu LL, Zheng XJ. Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline materials[J]. ACTA Mechanica. 2010, 213(3-4). 223-234.

DOI: 10.1007/s00707-009-0263-3

Google Scholar

[15] P. Sharma,S. Ganti. Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies[J]. Transaction of the ASME . 2004, 71. 663-671.

DOI: 10.1115/1.1781177

Google Scholar

[16] Shen Guanlin, Hu Gengkai. Mechanics of Composite [M]. Peking: Tsinghua University Press, (2006).

Google Scholar

[17] Wu Jialong. Elasticity [M]. Peking: Higher Education Press, (2008).

Google Scholar

[18] Lu Mingwan, Luo Xuefu. Foundations of Elasticity [M]. Peking: Tsinghua University Press, (2001).

Google Scholar

[19] Zhang Weimin. The Research on the Equivalent Viscoelastic Continuum Micromechanics for Polymer Based Nanocomposites [D]. PhD thesis. Hunan: Xiangtan University, (2006).

Google Scholar

[20] Zhao Jun, Liu Jingye. Foundations of Nanomechanics — From Solid-State Theory to Device Applications [M]. Peking: Chemical Industry Press, (2007).

Google Scholar