[1]
J. R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Commun. Partial. Differential Equations 16, 105-143 (1991).
DOI: 10.1080/03605309108820753
Google Scholar
[2]
Y. P. Chen, Q. Liu, H. J. Gao, Boundedness of global solutions of a porous medium equation with a localized source, Nonlinear Anal. 64, 2168-2182(2006).
DOI: 10.1016/j.na.2005.08.004
Google Scholar
[3]
W. A. Day, Extensions of propertity of heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. 40, 319-330 (1982).
DOI: 10.1090/qam/678203
Google Scholar
[4]
K. Deng, H. A. Levien, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243, 85-126 (2000).
DOI: 10.1006/jmaa.1999.6663
Google Scholar
[5]
J. I. Diaz, R. Kerser, On a non-linear degenerate parabolic equation in infiltration or evaporation through a porous medium, J. Differ. Equat. 238(1987), 368-403.
DOI: 10.1016/0022-0396(87)90125-2
Google Scholar
[6]
A. Friedman, J. B. Mcleod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34, 425-447(1985).
Google Scholar
[7]
H. A. Levien, The role of critical exponents in blow-up theorems, SIAM Rev. 32, 262-28(1990).
Google Scholar
[8]
Y. Gao, W. Gao, Existence and blow-up of solutions for a porous medium equation with nonlocal boundary condition, Applicable Analysis. 90(5), 799-809(2011).
DOI: 10.1080/00036811.2010.511191
Google Scholar