Threshold Variation Based on Triangular Probability Density Function for Error Diffusion Halftoning

Article Preview

Abstract:

This paper proposes an error diffusion based halftoning technique of which the threshold is randomly varied to minimize well-known artifacts often observed in the standard method by introducing a triangular probability density function. The diffusion of error is adaptively adjusted depending upon the magnitude of an edge to preserve boundary quality in a half-toned image.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

676-683

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Zhang, and M. Pang : Improved error diffusion based on HVS and first order gradient shaping filter (Inter. conf. Information engineering and computer science : 1~4, 2009).

DOI: 10.1109/iciecs.2009.5364985

Google Scholar

[2] K. Henry, in : Digital color halftoning, The international society for optical engineering-SPIE Publising, Bellingham, Washington and IEEE, Inc, NY. U.S. A (1999), in press.

Google Scholar

[3] B. E. Bayer : An optimum method for two-level rendition for continuous tone pictures(Inter. conf. Record : 11~15, 1973).

Google Scholar

[4] T. Mitsa and K. J. Parker : Digital halftoning technique using a blue noise mask (Jurnal of Opt, Soc, Amer, vol. 9: 1920~1929, 1992).

DOI: 10.1364/josaa.9.001920

Google Scholar

[5] R. Floyd and L. Steinberg : An adaptive algorithm for spatial grayscale (Proc. Soc. Image Display, vol. 17 : 75~77, 1976).

Google Scholar

[6] J. F. Jarvis, C. N. Judice, and W. H. Ninke : A survey of techniques for the display of continuous-tone pictures on bilevel displays( Comp. Graph. Image. Proc, vol. 5 : 13~40, 1976).

DOI: 10.1016/s0146-664x(76)80003-2

Google Scholar

[7] P. Stucki : MECCA-a multiple-error correcting computation algorithm for bi-level image hardcopy reproduction(Research report RZ1060, IBM Research Lab, Zurich, Switzerland, 1981).

Google Scholar

[8] J. Shiau and Z. Fan, U.S. Patent 5, 353, 127. (1994).

Google Scholar

[9] R. Ulichney, in : Digital Halftoning, MIT Publising, Cambridge, MA (1987), in press.

Google Scholar

[10] K. T. Knox : Threshold modulation in error diffusion on non-standard rasters(Proc, SPIE, vol. 2179 : 159~169, 2004).

Google Scholar