Parameters Estimation and Dynamics Control of Chay Model Using UKF

Article Preview

Abstract:

This paper describes a control framework that uses UKF to estimate unknown parameters, which has significant physiological functions in neuron model, from heavily noisecorrupted time series of active potential and choose the estimated parameters as control vector enables the control purposes of firing patterns transition. We apply this control strategy to the firing patterns from chaotic spiking to periodic one in the Chay model. It has been demonstrated that this framework is highefficiency and wide potential applications to various system in biology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

693-700

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Q. Yang, Q.S. Lu: Science in China Series Vol. 51 (2008), p.687.

Google Scholar

[2] A. L Ricardo, M. G Rafael: Chaos, solitons and fractals Vol. 37 (2008), p.539.

Google Scholar

[3] C.X. Han, J. Wang, B. Deng: Chaos, solitons and fractals Vol. 41 (2009), p. (2045).

Google Scholar

[4] W.Y. Jin, J.X. Xu, Y. Wu: Chinese Physic Vol. 13 (2004), p.335.

Google Scholar

[5] A.L. Hodgkin, A.F. Huxley: Bulletin of Mathematical Biology Vol. 52 (1990), p.25.

Google Scholar

[6] J. Cronin, in: Mathematical aspects of Hodgkin-Huxley neural theory. / Cambridge University Publising, Cambridge, England (1987), in press.

Google Scholar

[7] S. Doi, S. Nabetani, S. Kumagai: Biol Cybern Vol. 85 (2001), p.51.

Google Scholar

[8] J. Wang, J.M. Geng, X.Y. Fei: Chaos, Solitons & Fractals Vol. 23 (2005), p.973.

Google Scholar

[9] R.S. Paul, J.N.W. David: Bulletin of Mathematical Biology Vol. 62 (2000), p.695.

Google Scholar

[10] Q.S. Lu, Z.Q. Yang, L.X. Duan, H.G. Gu, W. Ren: Chaos, Solitons Vol. 40 (2009), p.577.

Google Scholar

[11] T.R. Chay, J. Keizer: Biophysical Journal Vol. 42 (1983), p.181.

Google Scholar

[12] T.R. Chay: Physica D Vol. 16 (1985), p.233.

Google Scholar

[13] T.R. Chay, Y.S. Lee, and Y.S. Fan: Int. J. Bifurc. Chaos Vol. 5 (1995), p.595.

Google Scholar

[14] X.L. Li, B.Z. Liu, J.H. Peng: Acta Biochim Biophys Sin. Vol. 13 (1997), p.626.

Google Scholar

[15] Z.Q. Yang, Q.S. Lu, H.G. Gu: Int. J. Bifurc Chaos Vol. 14 (2004), p.4143.

Google Scholar

[16] D.L. Xu, F.F. Lu: Chaos, Solitons and Fractals Vol. 25 (2005), p.361.

Google Scholar

[17] B. Deng, J. Wang, Y.Q. Che: Chaos Vol. 19 (2009), p.015105. 1.

Google Scholar

[18] X.L. Yang, W. Xu, Z.K. Sun: Physics Letters A Vol. 364 (2007), p.378.

Google Scholar

[19] H.U. Voss, J. Timmer, J. Kurths: Int. J. Bifurcation and Chaos Vol. 14 (2004), p. (1905).

Google Scholar

[20] G. Ullah, S.J. Schiff: Physical Review E Vol. 79 (1) (2009), p.040901. 1.

Google Scholar

[21] J.F. SchifS, T. Sauer: Journal of Neural Engineering Vol. 5 (2008), p.1.

Google Scholar

[22] R.E. Kalman, R.C. Bucy: J. Basic Eng. Vol. 82 (1960), p.35.

Google Scholar

[23] R.C. Kalman, R.C. Bucy: J. Basic Eng. Vol. 83, p.95.

Google Scholar

[24] S.J. Julier, J.K. Uhlmann: Proc. IEEE Vol. 92 (2004), p . 401.

Google Scholar

[25] L. Ljung: IEEE Trans on Automatic Control Vol. 24 (1979), p.36.

Google Scholar

[26] S. J Sauer, t. Center: Journal of Neural Engineering Vol. 5 (2008), p.1.

Google Scholar