Ant Colony Algorithm Application In Glass Fiber Textile Machine Parameter Tuning

Article Preview

Abstract:

In glass fiber textile process, non-axis volume cloth drive motor with glass fabric volume increases, increasing the pressure on the drive shaft, moreover, because of cloth non-axis volume makes the pressure in the process of change is evident, that causes the motor load changing constantly, the traditional PID control system controller cannot timely tracking response. In order to solve the problem which the control parameters optimizes, improves the system performance, proposed a new Ant colony algorithm PID parameters optimization strategy, this solution can combine characteristics that Ant colony algorithm can fast find the most superior parameter solution stably and PID can precise adjustment. In the control process, taken the PID parameters as a colony of ants, used to control the absolute error integral function as the optimization objective, dynamically adjust the PID control parameters in the control process, so as to realize the PID parameters on-line tuning.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-76

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sflva Guillermo J, Datta Anfruddha, Bhattacharyya S P. Newresults on the synthesis of PID controllers [J]. IEEE Transactions on Auto-matic Control, 2002, 47(2): 241-252.

Google Scholar

[2] FENG Xiao-bing, WANG Wei. MATERIALS AND PROCESS RESEARCH OF 2 MEGAWATT WIND TURBINE BLADE[J]. Fiber Reinforced Plastics/Composites, 2010, 4: 84-88.

Google Scholar

[3] Bamieh Bassam, Pagannini Fernando, Dahleh Munther A. Distributed control of spatially Invariant systems [J]. IEEE Transactions on Automatic Control, 2002, 47(7): 1091-1107.

DOI: 10.1109/tac.2002.800646

Google Scholar

[4] M Zhuang, D P Atherton. Automatic tuning of optimum PID controllers [J]. IEE PROCEEDINGS-D, 1993, 140(3): 216-224.

DOI: 10.1049/ip-d.1993.0030

Google Scholar

[5] C C Hang, K J Astrom, W K Ho. Refinements of the Ziegler-Nichols tuning formula[J]. IEE Proceeding-D, 1991, 138(2): 111 -118.

DOI: 10.1049/ip-d.1991.0015

Google Scholar

[6] Lee Jin Woo, Lee, Young Jin, Lee Kwon Soon. Anti-sway control of an ATC using NN predictive PID control[C]/IECON Proceedings(Industrial Electronics Conference), IECON 2004-30th Annual Conference of IEEE Industrial Electronics Society, 2004: 2998-3003.

DOI: 10.1109/iecon.2004.1432289

Google Scholar

[7] MA Xiang, WANG Shao-bo. Design of a kind of intelligent self-adjusting PID control system and application of stairstep singal [J]. Journal of Fuzhou University(Natural Science) , 2003, 31(4) 430-432.

Google Scholar

[8] Li Han-Xiong, Zhang Lei, Cai, Kai-Yuan, et al. An improved robust fuzzy-PID controller with optimal fuzzy reasoning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005, 35(6): 1283-1294.

DOI: 10.1109/tsmcb.2005.851538

Google Scholar

[9] Herrero J M, Blasco X, Martinez M, et al . Optimal PID tuning with gentic algorithms for non-linear process models[C]/IFAC 15th Triennial World Congress, Barcelona, Spain, (2002).

DOI: 10.3182/20020721-6-es-1901.00658

Google Scholar

[10] HAN HUA, LUO An, YANG Yong , A nonlinear PID controller based on genetic tuning algorithm [J] . Control and Decision, 2005, 20(4): 448-454.

Google Scholar

[11] Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transaction on Systems, 1996, 26(1): 1-26.

DOI: 10.1109/3477.484436

Google Scholar

[12] Dorigo M, Grmbardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transaction on Evolutionary Computation, 1997, 1(1): 53-66.

DOI: 10.1109/4235.585892

Google Scholar

[13] Corlorni A, Dorigo M, Maniezzo V, et al. Ant system for job-shop scheduling[J]. Belgian J Oper Res Statist Comput Sci, 1994, 34(1): 34-53.

Google Scholar