Methods to Improve Properties of Gate Dielectrics in Metal-Oxide-Semiconductor

Article Preview

Abstract:

This essay aims to introduce development of gate dielectrics. In present-day society, Si-based MOS has met its physical limitation. Scientists are trying to find a better material to reduce the thickness and dimension of MOS devices. While substrate materials are required to have a higher mobility, gate dielectrics are expected to have high k, low Dit and low leakage current. I conclude dielectrics in both Si-based and Ge-based MOS devices and several measures to improve the properties of these gate dielectric materials. I also introduce studies on process in our group and some achievements we have got. Significantly, this essay points out the special interest in rare-earth oxides functioning as gate dielectrics in recent years and summarizes the advantages and problems should be resolved in future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

1341-1345

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http: /en. wikipedia. org/wiki/Moore's_law.

Google Scholar

[2] Chris A. Mack, IEEE Transactions on Semiconductor Manufacturing Vol. 24(2011), p.202.

Google Scholar

[3] D Kahng: IEEE Trans. Electron Device Vol. 23(1976), p.655.

Google Scholar

[4] D. Bol, S. Boyd, D. Dornfeld: Application-aware LCA of semiconductors: Life-cycle energy of microprocessors from high-performance 32nm CPU to ultra-low-power 130nm MCU (Sustainable Systems and Tech Publications, Chicago 2011).

DOI: 10.1109/issst.2011.5936883

Google Scholar

[5] S. Kellis, N. Gaskin, B. Redd, J. Campbell, R. Brown: Energy profile of a microcontroller for neural prosthetic application (Circuits and Systems Publications, Paris 2010).

DOI: 10.1109/iscas.2010.5537715

Google Scholar

[6] M. E. Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, Sensors Vol. 9(2009), p.430.

Google Scholar

[7] P. M. Werking, U.S. Patent 7, 903, 011 B2. (2011).

Google Scholar

[8] D Nakagawa, Katsuhiro Kutsuki, Tomoya Ono, and Kikuji Hirose: Physica B Vol. 376-377 (2006), p.389.

Google Scholar

[9] Y. H. Wu, M. Y. Yang, Albert Chin, W. J. Chen, C. M. Kwei: IEEE Electron Device Letters Vol. 21 (2000), p.341.

Google Scholar

[10] Y. Xue, S. Xu, L. Dong, S. J. Ding, W. Zhang: Semiconductor Technology Vol. 34 (2009), p.127.

Google Scholar

[11] Y. Xue, S. Xu, L. Dong, S. J. Ding, W. Zhang: Semiconductor Technology Vol. 34 (2009), p.127.

Google Scholar

[12] Q. Xie, D. Deduytsche , M. Schaekers, M. Caymax, A. Delabie, X. P. Qu, and C. Detavernier, Appl. Phys. Lett. Vol. 97(2010): pp.112905-1.

DOI: 10.1063/1.3490710

Google Scholar

[13] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, Appl. Phys. Lett. Vol. 93 (2008), pp.032104-1.

Google Scholar

[14] Q. Xie, D. Deduytsche, M. Schaekers, M. Caymax, A. Delabie, X. P. Qu, and C. Detavernier, Appl. Phys Lett. Vol. 97 (2010), pp.112905-1.

DOI: 10.1063/1.3490710

Google Scholar

[15] M. M. Satter, A. E. Islam, D. Varghese, M. A. Alam, and A. Haque, Solid-State Elecrtronics Vol. 56 (2011), p.141.

Google Scholar

[16] A. Dimoulas, Y. Panayiotatos, A. Sotiropoulos, P. Tsipas, D. P. Brunco, G. Nicholas, J. V. Steenbergen, F. Bellenger, M. Houssa, M. Caymax, and M. Meuris, Solid-State Elecrtronics Vol. 51 (2007), p.1508.

DOI: 10.1016/j.sse.2007.09.029

Google Scholar

[17] K. Kutsuki, G. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, Appl. Phys. Lett. Vol. 95(2009), pp.022102-1.

Google Scholar

[18] K. Yamamoto, R. Ueno, T. Yamanaka, K. Hirayama, H. G. Yang, D. Wang, and H. Nakashima, Appl. Phys. Express Vol. 4 (2011), pp.051301-1.

Google Scholar

[19] D. Rébiscoul, S. Favier, J. P. Barnes, J. W. Maes, and F. Martin, Microelectron. Eng. Vol. 87(2010), p.278.

Google Scholar

[20] C. Andersson, C. Rossel, M. Sousa, D.J. Webb, C. Marchiori, D. Caimi, H. Siegwart, Y. Panayiotatos, A. Dimoulas, J. Fompeyrine, Microelectronic Engineering Vol. 86(2009), p.1635.

DOI: 10.1016/j.mee.2009.03.096

Google Scholar

[21] H.X. Xu, J.P. Xu, C.X. Li, P.T. Lai, Thin Solid Films Vol. 518(2010), p.6962.

Google Scholar

[22] H.X. Xu, J.P. Xu, C.X. Li, P.T. Lai, Appl. Phys. Let. Vol. 97(2010), p.022903.

Google Scholar

[13] A. Dimoulas, Y. Panayiotatos, A. Sotiropoulos, P. Tsipas, D. P. Brunco, G. Nicholas, J. Van Steenbergen, F. Bellenger, M. Houssa, M. Caymax, and M. Meuris, Solid-State Electronics Vol. 51(2007), p.1508.

DOI: 10.1016/j.sse.2007.09.029

Google Scholar

[24] Z.X. Yang, and T.K. Woo, Journal of Chemical Physics Vol. 120(2004), p.7741.

Google Scholar

[25] T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, Thin Solid Films Vol. 486(2005), p.136.

DOI: 10.1016/j.tsf.2004.11.240

Google Scholar

[26] N.V. Skorodumova, R. Ahuja, S.I. Simak, I.A. Abrikosov, B. Johansson, and B.I. Lundqvist, Physical Review B Vol. 64(2001), pp.115108-1.

Google Scholar

[27] C. Loschen, J. Carrasco, K.M. Neyman, and F. Illas, Physical Review B Vol. 75(2007), pp.035115-1.

Google Scholar