Synthesis of Na0.5Bi0.5TiO3 Microcubes via a Cr3+-Assisted Hydrothermal Route

Article Preview

Abstract:

Na0.5Bi0.5TiO3 microcubes with the side size ca. 20-30um were successfully fabricated by a Cr3+-assisted hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that Cr3+ played a significant role in the formation of Na0.5Bi0.5TiO3 microcubes. Possible mechanisms for the growth of Na0.5Bi0.5TiO3 microcubes are discussed. The results presented in this study would be important in investigating the correlation between morphology and basic physical properties, and may offer a route to control the morphology and size of crystals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

1497-1500

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Alivisatos, Science Vol, 271 (1996), p.933.

Google Scholar

[2] Y. Sun, Y. Xia, Science Vol, 298 (2002), p.2176.

Google Scholar

[3] C.J. Kiely, J. Fink, M. Brust, D. Bethel, D.J. Schiffrin, Nature Vol, 396 (1998), p.444.

Google Scholar

[4] X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Nature Vol, 437 (2005), p.121.

Google Scholar

[5] C. Zhang, Y.F. Zhu, Chem. Mater Vol, 17 (2005), p.3537.

Google Scholar

[6] H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, J. Phys. Chem. B Vol, 109 (2005), p.24380.

Google Scholar

[7] V. A. Isupov, P. L. Strelests, I. A. Serova, N. D. Yataenko, T. M. Shirobokikh, Sov. Phys. -Solid State (Engl. Transl. ) Vol, 6.

Google Scholar

[3] (1964), p.615.

Google Scholar

[8] K. Sakata and Y. Masuda, Ferroelectrics Vol, 7 (1974), p.347.

Google Scholar

[9] T. Takenaka and K. Sakata, Ferroelectrics Vol, 95 (1989), p.153.

Google Scholar

[10] S.K. Tripathy, M. Christy, N.H. Park, E.K. Suh, S. Anand, Y.T. Yu, Mater. Lett Vol, 62 (2008), p.1006.

Google Scholar

[11] A.R. Siekkinen, J.M. McLellan, J.Y. Chen, Y.N. Xia, Chem. Phys. Lett Vol, 432 (2006), p.491.

Google Scholar

[12] X.J. Zheng, Qi. Kuang, T. Xu, Z.Y. Jiang, S.H. Zhang, Z.X. Xie, R.B. Huang, L.S. Zheng, J. Phys. Chem. C Vol, 111 (2007), p.4499.

Google Scholar

[13] Y.J. Zhang, M. Guo, M. Zhang, C.Y. Yang, T. Ma, X.D. Wang, J. Cryst. Growth Vol, 308 (2007), p.99.

Google Scholar

[14] J.B. Liu, H. Wang, Y.D. Hou, M.K. Zhu, H. Yan, M. Yoshimura, Nanotechnology Vol, 15 (2004), p.777.

Google Scholar

[15] J.T. Zeng, K.W. Kwok, W.K. Tam, H.Y. Tian, X.P. Jiang, H.L.W. Chan, J. Am. Ceram. Soc Vol, 89 (2006), p.3850.

Google Scholar

[16] E.W. Shi, C.T. Xia, W.Z. Zhong, B.G. Wang, C.D. Feng, J. Am. Ceram. Soc Vol, 80 (1997), p.1567.

Google Scholar