Hydrothermal Synthesis of CeO2 Nanocrystals Using Oleate-Modified Precipitation Method

Article Preview

Abstract:

Monodispersed ceria nanocrystals have been synthesized by an oleate-modified precipitation method combined with a hydrothermal treatment at 200°C. TEM observation indicated that ceria nanoparticles with low-crystallinity were produced by synthesis at room temperature, which were crystallized by subsequent heat treatment to form nanocrystals. Produced ceria nanocrystals were well dispersed in a nonpolar solvent and were hardly agglomerated. TEM observation and Raman spectroscopy clarified that the size of ceria nanocrystals was in the range of 2-7 nm. Interparticle distance of cerium nanocrystals two-dimensionally aligned was in the range of 1.5-4 nm, which corresponds to the exclusive distance of oleic chains. Oleate-modified ceria nanocrystals exhibited strong fluorescence by green-laser excitation. Fluorescent behavior of ceria nanocrystals indicated that oleate detachment from the ceria surface and particle growth of ceria nanocrystals could be induced by laser irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

1501-1505

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.P. Murray, T. Tsai and S.A. Barnett, Nature, 400, 649 (1999).

Google Scholar

[2] R. Di Monte and J. Kaspar, J. Mater. Chem., 15, 633 (2005).

Google Scholar

[3] A. Corma, P. Atienzar, H. García and J.Y. C. -Ching, Nature Mater., 3, 394 (2004).

Google Scholar

[4] S. Tsunekawa, T. Fukuda and A. Kasuya, J. Appl. Phys., 87, 1318 (2000).

Google Scholar

[5] X.D. Feng, D.C. Sayle, Z.L. Wang, M.S. Paras, B. Santora, A.C. Sutorik, T.X.T. Sayle, Y. Yang, Y. Ding, X.D. Wang and Y.S. Her, Science, 312, 1504 (2006).

DOI: 10.1126/science.1125767

Google Scholar

[6] X. Wang and Y. Li, Chem. Commun., 2901 (2007).

Google Scholar

[7] M. Niederberger, G. Garnweitner, J. Buha, J. Polleux, J. Ba and N.J. Pinna, Sol-Gel Sci. Technol., 40, 259 (2006).

DOI: 10.1007/s10971-006-6668-8

Google Scholar

[8] S.G. Kwon and T. Hyeon, Acc. Chem. Res., 41, 1696 (2008).

Google Scholar

[9] H. Deng, S. Yang, S. Xiao, H. -M. Gong and Q. -Q. Wang, J. Am. Chem. Soc., 130, 2032 (2008).

Google Scholar

[10] S. Yang and L. Gao, J. Am. Chem. Soc., 128, 9330 (2006).

Google Scholar

[11] T. Taniguchi, T. Watanabe, N. Sakamoto, N. Matsushita and M. Yoshimura, Cryst. Growth Des., 8, 3725 (2008).

Google Scholar

[12] T. -D. Nguyen and T. -O. Do, J. Phys. Chem. C, 113, 11204 (2009).

Google Scholar

[13] Z.L. Wang and X. Feng, J. Phys. Chem. B, 107, 13563 (2003).

Google Scholar

[14] F. Zhang, Q. Jin and S. -W. Chan, J. Appl. Phys., 95, 4319 (2004).

Google Scholar

[15] K. Kaneko, K. Inoue, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S. Ohara and T. Adschiri, Nano Lett., 7, 421 (2007).

DOI: 10.1021/nl062677b

Google Scholar

[16] A. Tanaka, H. Kamikubo, M. Kataoka, Y. Hasegawa and T. Kawai, Langmuir, 27, 105 (2011).

Google Scholar

[17] W.H. Weber, K.C. Hass and J.R. McBride, Phys. Rev. B, 48, 178 (1993).

Google Scholar

[18] J.E. Spanier, R.D. Robinson, F. Zhang, S. -W. Chan and I.P. Herman, Phys. Rev. B, 64, 245407 (2001).

Google Scholar