Crystal Morphology of Hydroxyapatite Modulated by Glutamic Acid at Different Hydrothermal Temperatures

Article Preview

Abstract:

Large-sized hydroxyapatite (HA) crystals with different morphologies, such as whisker-like, tubular and plate-form shape were prepared at different hydrothermal temperatures. Reaction solutions with small concentration of Ca2+, PO43- and OH- ions were used for HA synthesis. Phase identifications and morphological characterizations indicated that HA crystal grew along c axis under the modulation of glutamic acid adsorbent. The formation mechanism was explained according to the interfacial structures between glutamic acid and HA, as well as thermodynamic and kinetic considerations of crystal nucleation and growth. Understanding the evolution of crystal morphology in a specified reaction solution might favor to control the shape of crystals by the hydrothermal method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

36-40

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.N. Inés, G. Francisco, T. Takaaki, W. Tomoaki and Y. Masahiro: J. Mater. Sci. Vol. 43 (2008), p.2171.

Google Scholar

[2] B. Susmita, B. Ashis, D. Sudip and B. Amit: J. Am. Ceram. Soc. Vol. 92 (2009), p.323.

Google Scholar

[3] S. Wojciech, Y. Masatomo, K. Masato and Y. Masahiro: J. Am. Ceram. Soc. Vol. 80 (1997), p.2805.

Google Scholar

[4] A. Dorner-Reisel, E. Müller and G. Tomandl: Adv. Eng. Mater. Vol. 6 (2004), p.572.

Google Scholar

[5] K.R. Ryan, L.C. Gabriel, H. Leng and W. Yue: J. Am. Ceram. Soc. Vol. 89 (2006), p. (2096).

Google Scholar

[6] A.C. Tas: J. Am. Ceram. Soc. Vol. 84 (2001), p.295.

Google Scholar

[7] O. Yoshio and I. Tetsushi: J. Am. Ceram. Soc. Vol. 81 (1998), p.1665.

Google Scholar

[8] R. Zhu, R. Yu, J. Yao, D. Wang and J. Ke: J. Alloys Compd. Vol. 457 (2008), p.555.

Google Scholar

[9] H. Zhang, Y. Wang, Y. Yan and S. Li: Ceram. Int. Vol. 29 (2003), p.413.

Google Scholar

[10] H. Zhang and Q. Zhu: China Particuology Vol. 3 (2005), p.317.

Google Scholar

[11] M. Yoichiro, H. Masateru, O. Masahiko, K. Toshihiro and N. Masayuki: J. Eur. Ceram. Soc. Vol. 25 (2005), p.3181.

Google Scholar

[12] H. Pan, J. Tao, X. Xu and R. Tang: Langmuir Vol. 23 (2007), p.8972.

Google Scholar

[13] B. Viswanath and N. Ravishankar: Biomaterials Vol. 29 (2008), p.4855.

Google Scholar

[14] Y. Wang, S. Zhang, K. Wei, N. Zhao, J. Chen and X. Wang: Mater. Lett. Vol. 60 (2006), p.1484.

Google Scholar

[15] A. Mamoru, E.P. Alexandra, M.B. Serena and B. William: Biomaterials Vol. 26 (2005), p.3427.

Google Scholar

[16] H. Zhang and Q. Zhu: Chem. Lett. Vol. 34 (2005), p.788.

Google Scholar

[17] Y.X. Pang and X. Bao: J. Eur. Ceram. Soc. Vol. 23 (2003), p.1697.

Google Scholar

[18] P. Barbara, W. Dominic, I. Michele, F. Elisabetta, B. Luca, M. Gianmario, L.B. Claudia, C. Giuseppe and R. Norberto: Acta Biomater. Vol. 5 (2009), p.1241.

Google Scholar

[19] H.S. Barbara: Infrared spectroscopy: fundamentals and applications (John Willey & Sons, Ltd; United Kingdom, 2004).

Google Scholar

[20] Q.M. Shen, L.P. Jiang, J.J. Miao, W.H. Hou and J.J. Zhu: Chem. Comm. (2008) p.1683.

Google Scholar

[21] C.F. Li, S. G Liu, G.C. Li, J.H. bai, W.W. Wang and Q.Y. Du: Adv. Powder Tech. Vol. 22 (2011), p.537.

Google Scholar